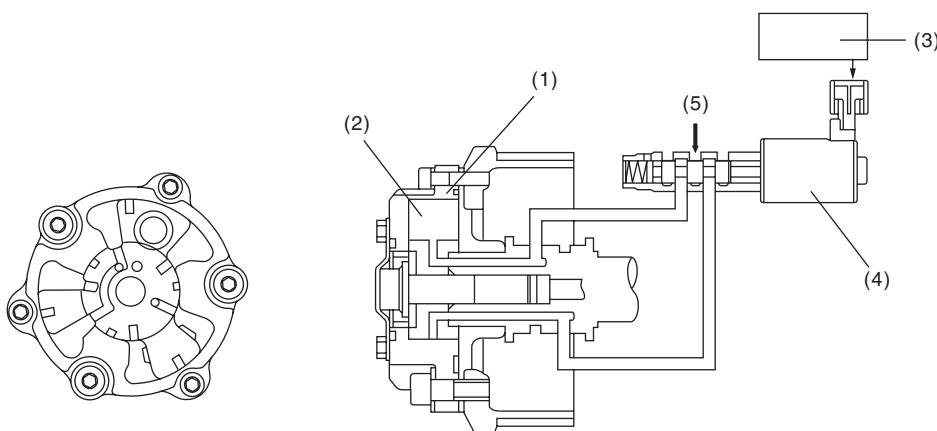


## 2. Diagnostic Trouble Code (DTC) Detecting Criteria


### A: DTC P0011 INTAKE CAMSHAFT POSITION - TIMING OVER-ADVANCED OR SYSTEM PERFORMANCE (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the AVCS system malfunction.

Judge as NG when the amount of AVCS actual timing advance does not approach to the amount of AVCS target timing advance.

#### 2. COMPONENT DESCRIPTION



EN-01852

|                            |                                     |                  |
|----------------------------|-------------------------------------|------------------|
| (1) AVCS timing controller | (3) Engine control module (ECM)     | (5) Oil pressure |
| (2) Vane                   | (4) Oil flow control solenoid valve |                  |

#### 3. ENABLE CONDITION

| Secondary Parameters                                    | Enable Conditions |
|---------------------------------------------------------|-------------------|
| Time of establishing all secondary parameter conditions | ≥ 5000 ms         |
| Battery voltage                                         | ≥ 10.9 V          |
| Engine speed                                            | ≥ 1500 rpm        |
| Engine coolant temperature                              | ≥ 50 °C (122 °F)  |
| AVCS control                                            | Operation         |
| Target timing advance change amount (per 64 ms)         | < 1.07 °CA        |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after warming up when the engine speed increases and AVCS operates.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

- 1) When the conditions during which the differences of AVCS target timing advance amount and AVCS actual timing advance amount is large continues for certain amount of time.
- 2) When the differences of target timing advance amount and actual timing advance amount is calculated during AVCS control, and the difference per predetermined time is the specified value or larger.

#### • Abnormality Judgement

Judge as NG when the following conditions are established within the predetermined time.

#### Judgement Value

| Malfunction Criteria                                      | Threshold Value                                                                                |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| $\Sigma(\text{Target position} - \text{Actual position})$ | $> 7000 {}^{\circ}\text{CA}(\text{Bank 1})$<br>$> 7000 {}^{\circ}\text{CA}(\text{Bank 2})$     |
| or                                                        |                                                                                                |
| $\Sigma(\text{Target position} - \text{Actual position})$ | $< -12000 {}^{\circ}\text{CA}(\text{Bank 1})$<br>$< -12000 {}^{\circ}\text{CA}(\text{Bank 2})$ |

**Time Needed for Diagnosis:** 60000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

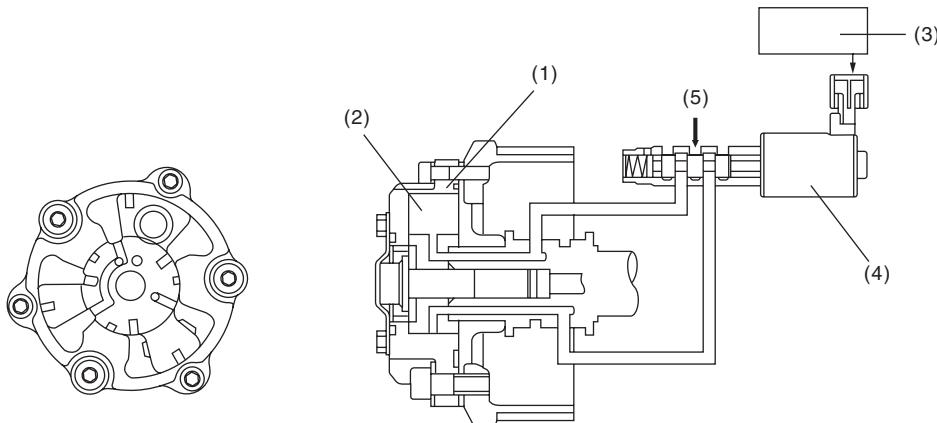
#### • Normality Judgement

Judge as OK and clear the NG if the following conditions are established within the predetermined time.

#### Judgement Value

| Malfunction Criteria                                      | Threshold Value                                                                                                                                                                                                 |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Sigma(\text{Target position} - \text{Actual position})$ | $\leq 7000 {}^{\circ}\text{CA}(\text{Bank 1})$<br>$\leq 7000 {}^{\circ}\text{CA}(\text{Bank 2})$<br>and<br>$\geq -12000 {}^{\circ}\text{CA}(\text{Bank 1})$<br>$\geq -12000 {}^{\circ}\text{CA}(\text{Bank 2})$ |

**Time Needed for Diagnosis:** 60000 ms


### B: DTC P0014 EXHAUST AVCS SYSTEM 1 (RANGE/PERFORMANCE)

#### 1. OUTLINE OF DIAGNOSIS

Detect the exhaust AVCS system malfunction.

Judge as NG when the amount of exhaust AVCS actual timing advance does not approach to the amount of exhaust AVCS target timing advance.

#### 2. COMPONENT DESCRIPTION



EN-01852

|                                    |                                     |                  |
|------------------------------------|-------------------------------------|------------------|
| (1) Exhaust AVCS timing controller | (3) Engine control module (ECM)     | (5) Oil pressure |
| (2) Vane                           | (4) Oil flow control solenoid valve |                  |

#### 3. ENABLE CONDITION

| Secondary Parameters                                    | Enable Conditions |
|---------------------------------------------------------|-------------------|
| Time of establishing all secondary parameter conditions | ≥ 5000 ms         |
| Battery voltage                                         | ≥ 10.9 V          |
| Engine speed                                            | ≥ 1500 rpm        |
| Engine coolant temperature                              | ≥ 50 °C (122 °F)  |
| Exhaust AVCS control                                    | Operation         |
| Target timing advance change amount (per 64 ms)         | < 1.07 °CA        |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after warming up when the engine speed increases and exhaust AVCS operates.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

- 1) When the conditions during which the differences of exhaust AVCS target timing advance amount and exhaust AVCS actual timing advance amount is large continues for certain amount of time.
- 2) When the differences of target timing advance amount and actual timing advance amount is calculated during exhaust AVCS control, and the difference per predetermined time is the specified value or larger.

#### • Abnormality Judgement

Judge as NG when the following conditions are established within the predetermined time.

#### Judgement Value

| Malfunction Criteria                                      | Threshold Value                                                                  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------|
| $\Sigma(\text{Target position} - \text{Actual position})$ | $> 8000 {}^{\circ}\text{CA}$ (Bank 1)<br>$> 8000 {}^{\circ}\text{CA}$ (Bank 2)   |
| or                                                        |                                                                                  |
| $\Sigma(\text{Target position} - \text{Actual position})$ | $< -4000 {}^{\circ}\text{CA}$ (Bank 1)<br>$< -4000 {}^{\circ}\text{CA}$ (Bank 2) |

#### Time Needed for Diagnosis:

50000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

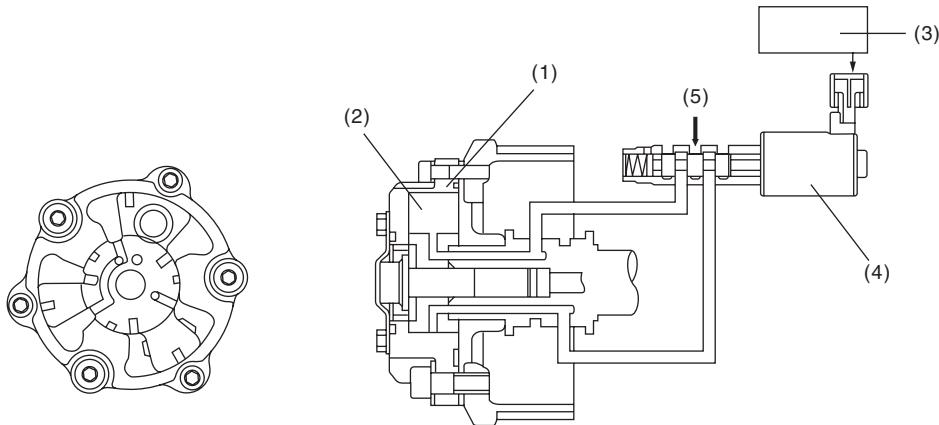
#### • Normality Judgement

Judge as OK and clear the NG if the following conditions are established within the predetermined time.

#### Judgement Value

| Malfunction Criteria                                      | Threshold Value                                                                                                                                                                       |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Sigma(\text{Target position} - \text{Actual position})$ | $\leq 8000 {}^{\circ}\text{CA}$ (Bank 1)<br>$\leq 8000 {}^{\circ}\text{CA}$ (Bank 2)<br>and<br>$\geq -4000 {}^{\circ}\text{CA}$ (Bank 1)<br>$\geq -4000 {}^{\circ}\text{CA}$ (Bank 2) |

#### Time Needed for Diagnosis: 50000 ms


### C: DTC P0016 CRANKSHAFT POSITION - CAMSHAFT POSITION CORRELATION (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the AVCS system malfunction.

Judge as NG when the timing advance is outside the normal range.

#### 2. COMPONENT DESCRIPTION



EN-01852

|                            |                                     |                  |
|----------------------------|-------------------------------------|------------------|
| (1) AVCS timing controller | (3) Engine control module (ECM)     | (5) Oil pressure |
| (2) Vane                   | (4) Oil flow control solenoid valve |                  |

#### 3. ENABLE CONDITION

| Secondary Parameters       | Enable Conditions     |
|----------------------------|-----------------------|
| Battery voltage            | $\geq 10.9$ V         |
| Engine speed               | $\geq 500$ rpm        |
| Engine coolant temperature | $\geq 50$ °C (122 °F) |
| AVCS control               | Not in operation      |
| Target timing advance      | 0°CA                  |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after warming up and while AVCS is not operating.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

Judge as NG when the camshaft sensor input position is not within the normal range.

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                              | Threshold Value                                                                                            |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Crankshaft position when camshaft position sensor signal is input | < BTDC 22 °CA (Bank 1)<br>< BTDC 22 °CA (Bank 2)<br>or<br>> BTDC 58 °CA (Bank 1)<br>> BTDC 58 °CA (Bank 2) |

**Time Needed for Diagnosis:** 20000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

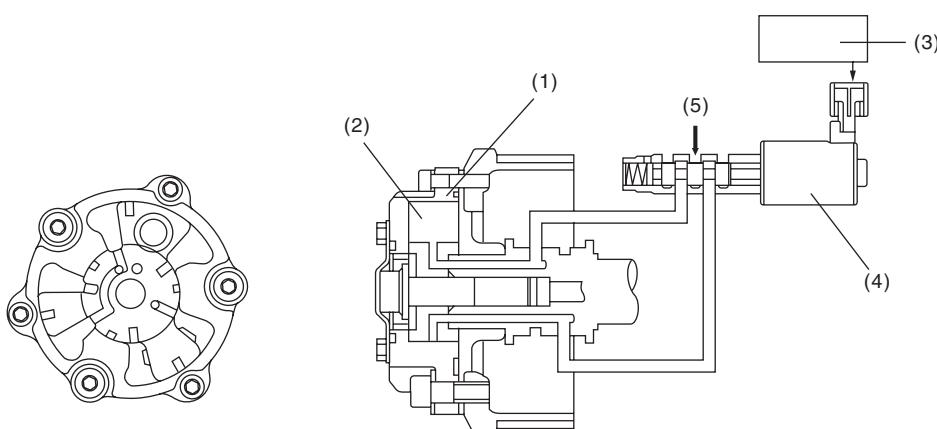
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                                              | Threshold Value                                                                                                                 |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Crankshaft position when camshaft position sensor signal is input | $\geq$ BTDC 22 °CA (Bank 1)<br>$\geq$ BTDC 22 °CA (Bank 2)<br>and<br>$\leq$ BTDC 58 °CA (Bank 1)<br>$\leq$ BTDC 58 °CA (Bank 2) |

**Time Needed for Diagnosis:** 1000 ms


### D: DTC P0017 CRANK AND CAM TIMING B SYSTEM FAILURE (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the exhaust AVCS system malfunction.

Judge as NG when the timing advance is outside the normal range.

#### 2. COMPONENT DESCRIPTION



EN-01852

(1) Exhaust AVCS timing controller

(3) Engine control module (ECM)

(5) Oil pressure

(2) Vane

(4) Oil flow control solenoid valve

#### 3. ENABLE CONDITION

| Secondary Parameters       | Enable Conditions     |
|----------------------------|-----------------------|
| Battery voltage            | $\geq 10.9$ V         |
| Engine speed               | $\geq 500$ rpm        |
| Engine coolant temperature | $\geq 50$ °C (122 °F) |
| Exhaust AVCS control       | Not in operation      |
| Target timing advance      | 0°CA                  |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after warming up and while exhaust AVCS is not operating.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

Judge as NG when the camshaft sensor input position is not within the normal range.

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                              | Threshold Value                                                                                            |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Crankshaft position when camshaft position sensor signal is input | < BTDC 32 °CA (Bank 1)<br>< BTDC 32 °CA (Bank 2)<br>or<br>> BTDC 68 °CA (Bank 1)<br>> BTDC 68 °CA (Bank 2) |

**Time Needed for Diagnosis:** 20000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                                              | Threshold Value                                                                                                                 |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Crankshaft position when camshaft position sensor signal is input | $\geq$ BTDC 32 °CA (Bank 1)<br>$\geq$ BTDC 32 °CA (Bank 2)<br>and<br>$\leq$ BTDC 68 °CA (Bank 1)<br>$\leq$ BTDC 68 °CA (Bank 2) |

**Time Needed for Diagnosis:** 1000 ms

### **E: DTC P0018 CRANKSHAFT POSITION - CAMSHAFT POSITION CORRELATION (BANK 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0016. <Ref. to GD(H6DO)-13, DTC P0016 CRANKSHAFT POSITION - CAMSHAFT POSITION CORRELATION (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **F: DTC P0019 CRANK AND CAM TIMING B SYSTEM FAILURE (BANK 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0017. <Ref. to GD(H6DO)-15, DTC P0017 CRANK AND CAM TIMING B SYSTEM FAILURE (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **G: DTC P0021 INTAKE CAMSHAFT POSITION - TIMING OVER-ADVANCED OR SYSTEM PERFORMANCE (BANK 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0011. <Ref. to GD(H6DO)-9, DTC P0011 INTAKE CAMSHAFT POSITION - TIMING OVER-ADVANCED OR SYSTEM PERFORMANCE (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **H: DTC P0024 EXHAUST AVCS SYSTEM 2 (RANGE/PERFORMANCE)**

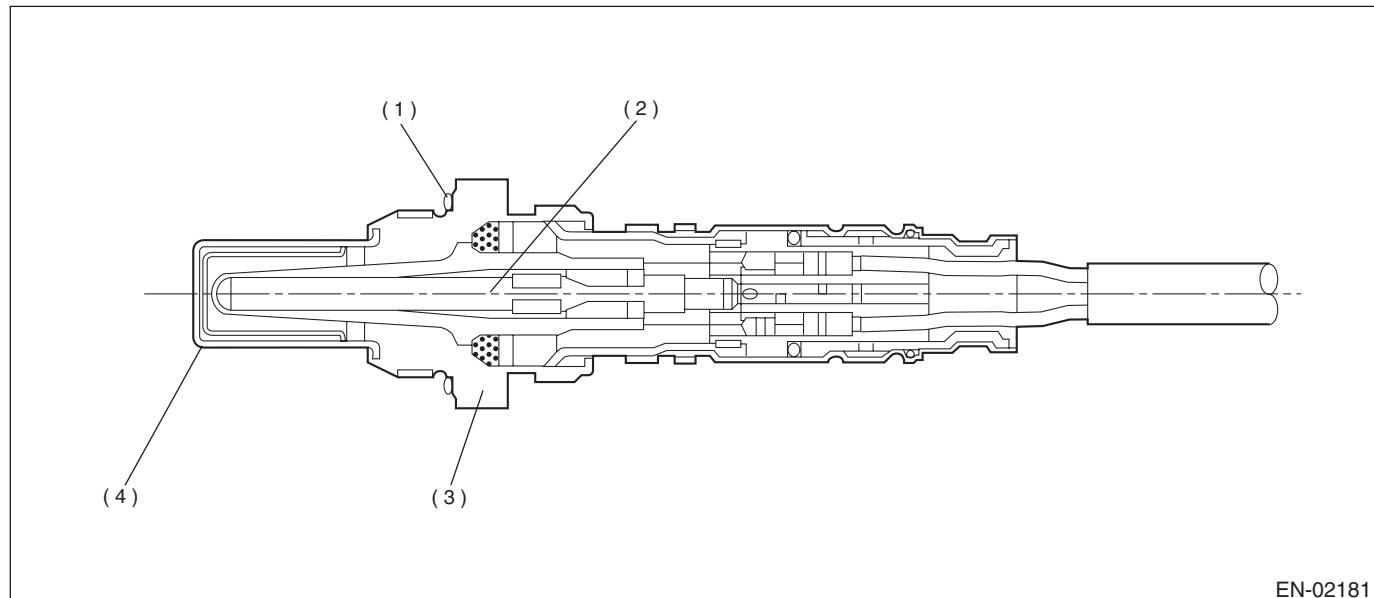
#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0014. <Ref. to GD(H6DO)-11, DTC P0014 EXHAUST AVCS SYSTEM 1 (RANGE/PERFORMANCE), Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION


### I: DTC P0030 HO2S HEATER CONTROL CIRCUIT (BANK 1 SENSOR 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect functional errors of the front oxygen (A/F) sensor heater.

Judge as NG when it is determined that the front oxygen (A/F) sensor impedance is large when looking at engine status such as deceleration fuel cut.

#### 2. COMPONENT DESCRIPTION



|                    |                    |                     |
|--------------------|--------------------|---------------------|
| (1) Gasket         | (3) Sensor housing | (4) Protection tube |
| (2) Ceramic heater |                    |                     |

#### 3. ENABLE CONDITION

| Secondary Parameters       | Enable Conditions |
|----------------------------|-------------------|
| Condition established time | $\geq 30000$ ms   |
| Battery voltage            | $\geq 10.9$ V     |
| Heater current             | Permitted         |
| Control duty $\geq 35$ %   | Experienced       |
| After fuel cut             | $\geq 20000$ ms   |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after 30000 ms seconds or more have passed since the engine started.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                | Threshold Value |
|-------------------------------------|-----------------|
| Front oxygen (A/F) sensor impedance | > 50 Ω          |

**Time Needed for Diagnosis:** 10000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

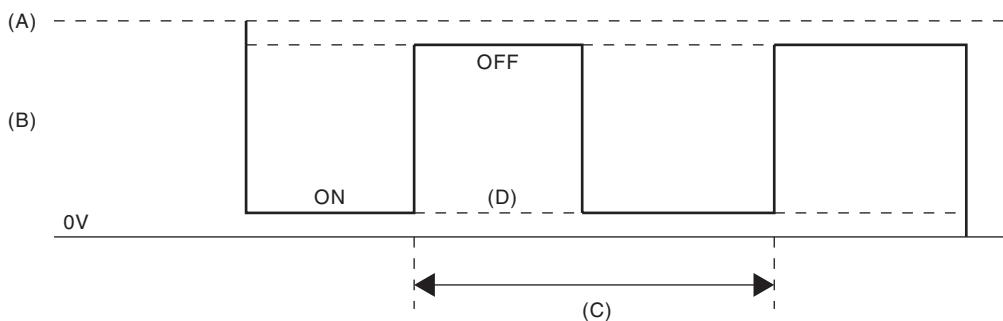
| Malfunction Criteria                | Threshold Value |
|-------------------------------------|-----------------|
| Front oxygen (A/F) sensor impedance | ≤ 50 Ω          |

**Time Needed for Diagnosis:** 10000 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### J: DTC P0031 HO2S HEATER CONTROL CIRCUIT LOW (BANK 1 SENSOR 1)


#### 1. OUTLINE OF DIAGNOSIS

Detect front oxygen (A/F) sensor heater open or short circuit.

The front oxygen (A/F) sensor heater performs duty control, and the output terminal voltage at ON is 0 V, and the output terminal voltage at OFF is the battery voltage.

Judge as NG when the terminal voltage remains Low.

#### 2. COMPONENT DESCRIPTION



EN-01792

(A) Battery voltage

(C) 128 milliseconds

(D) Low error

(B) Front oxygen (A/F) sensor heater  
output voltage

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Battery voltage      | $\geq 10.9$ V     |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                          | Threshold Value |
|-----------------------------------------------|-----------------|
| Output voltage level                          | Low             |
| Front oxygen (A/F) sensor heater control duty | < 87.5 %        |

**Time Needed for Diagnosis:** 4 ms × 250 time(s)

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

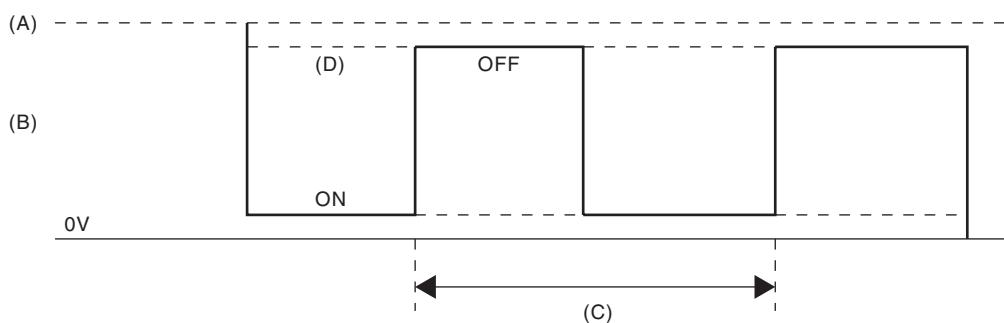
| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage level | High            |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### K: DTC P0032 HO2S HEATER CONTROL CIRCUIT HIGH (BANK 1 SENSOR 1)


#### 1. OUTLINE OF DIAGNOSIS

Detect front oxygen (A/F) sensor heater open or short circuit.

The front oxygen (A/F) sensor heater performs duty control, and the output terminal voltage at ON is 0 V, and the output terminal voltage at OFF is the battery voltage.

Judge as NG when the terminal voltage remains High.

#### 2. COMPONENT DESCRIPTION



EN-01793

|                                                     |                      |                |
|-----------------------------------------------------|----------------------|----------------|
| (A) Battery voltage                                 | (C) 128 milliseconds | (D) High error |
| (B) Front oxygen (A/F) sensor heater output voltage |                      |                |

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Battery voltage      | $\geq 10.9$ V     |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                          | Threshold Value |
|-----------------------------------------------|-----------------|
| Output voltage level                          | High            |
| Front oxygen (A/F) sensor heater control duty | $\geq 12.5\%$   |

**Time Needed for Diagnosis:** 4 ms  $\times$  250 time(s)

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage level | Low             |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### L: DTC P0037 HO2S HEATER CONTROL CIRCUIT LOW (BANK 1 SENSOR 2)

#### 1. OUTLINE OF DIAGNOSIS

Detect the rear oxygen sensor heater open or short circuit.

The rear oxygen sensor heater performs duty control, and the output terminal voltage at ON is 0 V, and the output terminal voltage at OFF is the battery voltage.

Judge as NG when the terminal voltage remains Low.

#### 2. COMPONENT DESCRIPTION



EN-01792

|                                                     |                               |               |
|-----------------------------------------------------|-------------------------------|---------------|
| (A) Battery voltage                                 | (C) 256 milliseconds (cycles) | (D) Low error |
| (B) Output voltage of the rear oxygen sensor heater |                               |               |

#### 3. ENABLE CONDITION

| Secondary Parameters               | Enable Conditions |
|------------------------------------|-------------------|
| Battery voltage                    | $\geq 10.9$ V     |
| Elapsed time after engine starting | $\geq 1$ second   |
| Engine speed                       | < 4500 rpm        |

#### 4. GENERAL DRIVING CYCLE

After starting the engine, perform the diagnosis continuously when engine is low speed.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                   | Threshold Value |
|----------------------------------------|-----------------|
| Output voltage level                   | Low             |
| Rear oxygen sensor heater control duty | < 75 %          |

**Time Needed for Diagnosis:** 8 ms × 320 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

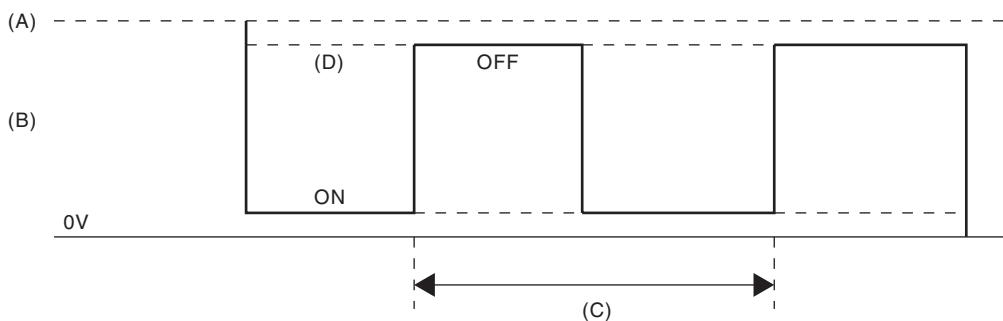
| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage level | High            |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### M: DTC P0038 HO2S HEATER CONTROL CIRCUIT HIGH (BANK 1 SENSOR 2)


#### 1. OUTLINE OF DIAGNOSIS

Detect the rear oxygen sensor heater open or short circuit.

The rear oxygen sensor heater performs duty control, and the output terminal voltage at ON is 0 V, and the output terminal voltage at OFF is the battery voltage.

Judge as NG when the terminal voltage remains High.

#### 2. COMPONENT DESCRIPTION



EN-01793

(A) Battery voltage

(C) 256 milliseconds (cycles)

(D) High error

(B) Output voltage of the rear oxygen sensor heater

#### 3. ENABLE CONDITION

| Secondary Parameters               | Enable Conditions |
|------------------------------------|-------------------|
| Battery voltage                    | $\geq 10.9$ V     |
| Elapsed time after engine starting | $\geq 1$ second   |
| Engine speed                       | < 4500 rpm        |

#### 4. GENERAL DRIVING CYCLE

After starting the engine, perform the diagnosis continuously when engine is low speed.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                   | Threshold Value |
|----------------------------------------|-----------------|
| Output voltage level                   | High            |
| Rear oxygen sensor heater control duty | $\geq 15\%$     |

**Time Needed for Diagnosis:** 8 ms  $\times$  320 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage level | Low             |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### **N: DTC P0050 HO2S HEATER CONTROL CIRCUIT (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0030. <Ref. to GD(H6DO)-18, DTC P0030 HO2S HEATER CONTROL CIRCUIT (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **O: DTC P0051 HO2S HEATER CONTROL CIRCUIT LOW (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0031. <Ref. to GD(H6DO)-20, DTC P0031 HO2S HEATER CONTROL CIRCUIT LOW (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **P: DTC P0052 HO2S HEATER CONTROL CIRCUIT HIGH (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0032. <Ref. to GD(H6DO)-22, DTC P0032 HO2S HEATER CONTROL CIRCUIT HIGH (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **Q: DTC P0057 HO2S HEATER CONTROL CIRCUIT LOW (BANK 2 SENSOR 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

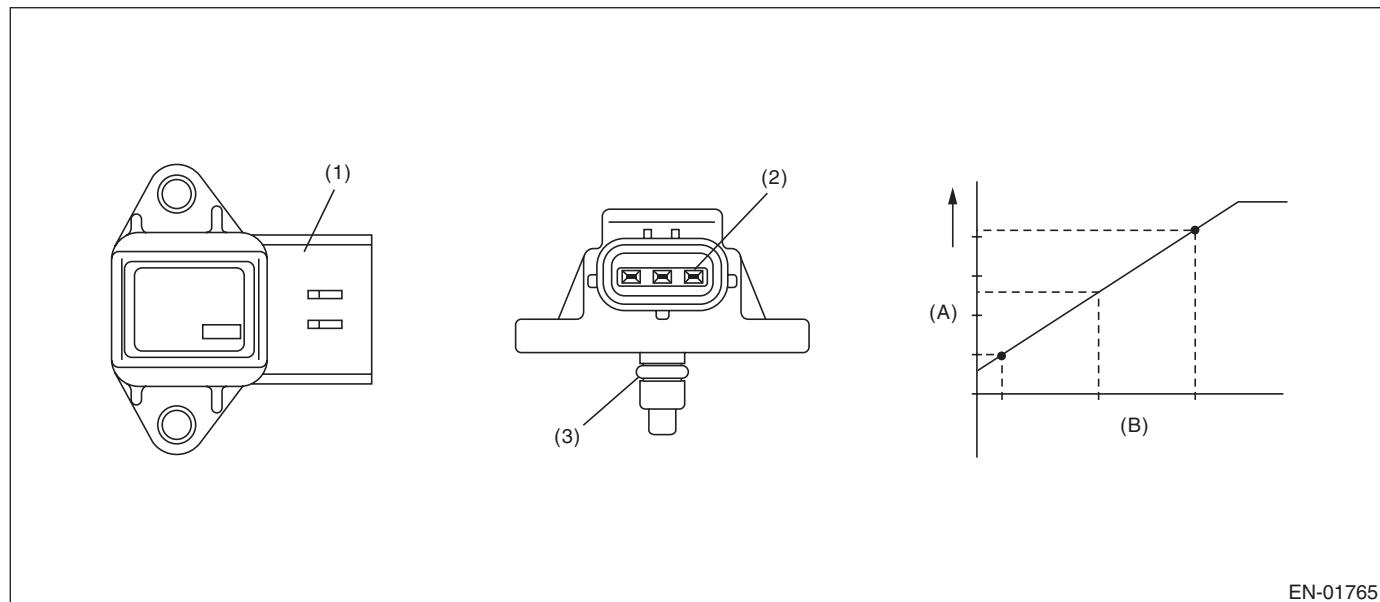
For the detection standard, refer to DTC P0037. <Ref. to GD(H6DO)-24, DTC P0037 HO2S HEATER CONTROL CIRCUIT LOW (BANK 1 SENSOR 2), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **R: DTC P0058 HO2S HEATER CONTROL CIRCUIT HIGH (BANK 2 SENSOR 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0038. <Ref. to GD(H6DO)-26, DTC P0038 HO2S HEATER CONTROL CIRCUIT HIGH (BANK 1 SENSOR 2), Diagnostic Trouble Code (DTC) Detecting Criteria.>


## S: DTC P0068 MAP/MAF - THROTTLE POSITION CORRELATION

## 1. OUTLINE OF DIAGNOSIS

Detect problems in the intake manifold pressure sensor output properties.

Judge as NG when the intake air pressure AD value is Low whereas it seemed to be High from the viewpoint of engine condition, or when it is High whereas it seemed to be Low from the engine condition.

## 2. COMPONENT DESCRIPTION



(1) Connector (2) Terminals

(3) O-ring

### 3. ENABLE CONDITION

| Secondary Parameters       | Enable Conditions                  |
|----------------------------|------------------------------------|
| Engine coolant temperature | $\geq 75^{\circ}\text{C}$ (167 °F) |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after idling.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when Low side or High side becomes NG.

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value           |
|----------------------|---------------------------|
| <b>Low</b>           |                           |
| Engine speed         | < 2700 rpm                |
| Throttle position    | ≥ 15 °                    |
| Output voltage       | < 1.99 V                  |
| Engine load          | > 1 g/rev (0.04 oz/rev)   |
| <b>High</b>          |                           |
| Engine speed         | 500 rpm — 850 rpm         |
| Throttle position    | < 3.5 °                   |
| Output voltage       | ≥ 2.78 V                  |
| Engine load          | < 0.6 g/rev (0.02 oz/rev) |

#### Time Needed for Diagnosis:

Low side: 3000 ms

High side: 10000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG when both Low side and High side become OK.

If the duration of time while the following conditions are met is longer than the time indicated, judge as OK.

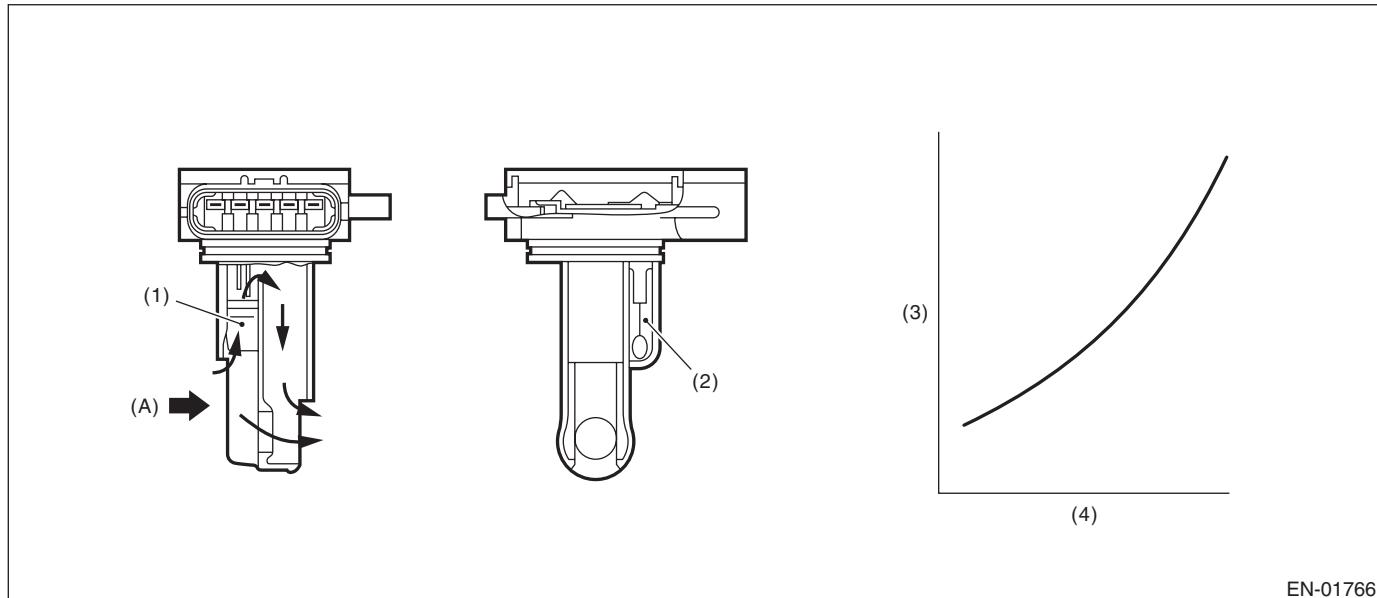
#### Judgement Value

| Malfunction Criteria | Threshold Value           |
|----------------------|---------------------------|
| <b>Low</b>           |                           |
| Engine speed         | < 2700 rpm                |
| Throttle position    | ≥ 15 °                    |
| Output voltage       | ≥ 1.99 V                  |
| Engine load          | > 1 g/rev (0.04 oz/rev)   |
| <b>High</b>          |                           |
| Engine speed         | 500 rpm — 850 rpm         |
| Throttle position    | < 3.5 °                   |
| Output voltage       | < 2.78 V                  |
| Engine load          | < 0.6 g/rev (0.02 oz/rev) |

#### Time Needed for Diagnosis:

Low side: Less than 1 second

High side: Less than 1 second


### T: DTC P0101 MASS OR VOLUME AIR FLOW CIRCUIT RANGE/PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of air flow sensor output properties.

Judge as a low side NG when the air flow voltage indicates a small value regardless of running in a state where the air flow voltage increases. Judge as a high side NG when the air flow voltage indicates a large value regardless of running in a state where the air flow voltage decreases. Judge air flow sensor property NG when the Low side or High side becomes NG.

#### 2. COMPONENT DESCRIPTION



EN-01766

(A) Air

(1) Air flow sensor

(3) Voltage (V)

(4) Amount of intake air (kg (lb)/s)

(2) Intake air temperature sensor

#### 3. ENABLE CONDITION

| Secondary Parameters       | Enable Conditions                                   |
|----------------------------|-----------------------------------------------------|
| Engine coolant temperature | $\geq 75^{\circ}\text{C}$ ( $167^{\circ}\text{F}$ ) |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after idling.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when Low side or High side becomes NG.

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria     | Threshold Value                  |
|--------------------------|----------------------------------|
| <b>Low</b>               |                                  |
| Output voltage           | < 1.74 V                         |
| Engine speed             | ≥ 2000 rpm                       |
| Throttle opening angle   | ≥ 15 °                           |
| Intake manifold pressure | ≥ 73.3 kPa (550 mmHg, 21.7 inHg) |
| <b>High (1)</b>          |                                  |
| Output voltage           | ≥ 1.83 V                         |
| Engine speed             | 500 rpm — 850 rpm                |
| Throttle opening angle   | < 3.5 °                          |
| Intake manifold pressure | < 46.7 kPa (350 mmHg, 13.8 inHg) |
| <b>High (2)</b>          |                                  |
| Output voltage           | ≥ 1.73 V                         |
| Engine speed             | 500 rpm — 850 rpm                |
| Throttle opening angle   | < 3.5 °                          |
| Intake manifold pressure | < 46.7 kPa (350 mmHg, 13.8 inHg) |
| Fuel system diagnosis    | Rich side malfunction            |

#### Time Needed for Diagnosis:

Low: 5000 ms

High: 10000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG when both Low side and High side become OK.

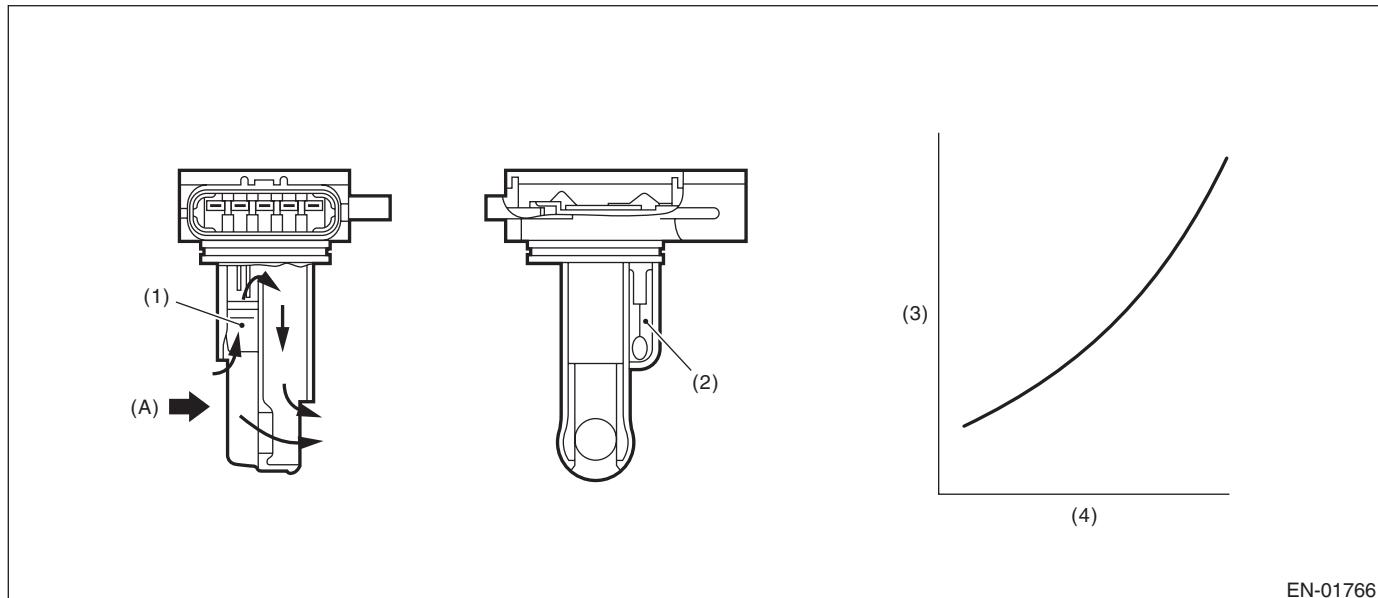
Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria     | Threshold Value                  |
|--------------------------|----------------------------------|
| <b>Low</b>               |                                  |
| Output voltage           | ≥ 1.74 V                         |
| Engine speed             | ≥ 2000 rpm                       |
| Throttle opening angle   | ≥ 15 °                           |
| Intake manifold pressure | ≥ 73.3 kPa (550 mmHg, 21.7 inHg) |
| <b>High</b>              |                                  |
| Output voltage           | < 1.83 V                         |
| Engine speed             | 500 rpm — 850 rpm                |
| Throttle opening angle   | < 3.5 °                          |
| Intake manifold pressure | < 46.7 kPa (350 mmHg, 13.8 inHg) |
| Fuel system diagnosis    | Rich side normal                 |

#### Time Needed for Diagnosis:

Low: Less than 1 second


High: Less than 1 second

### U: DTC P0102 MASS OR VOLUME AIR FLOW CIRCUIT LOW INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuits of the air flow sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01766

(A) Air

(1) Air flow sensor

(3) Voltage (V)

(4) Amount of intake air (kg (lb)/s)

(2) Intake air temperature sensor

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\leq 0.2$ V    |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

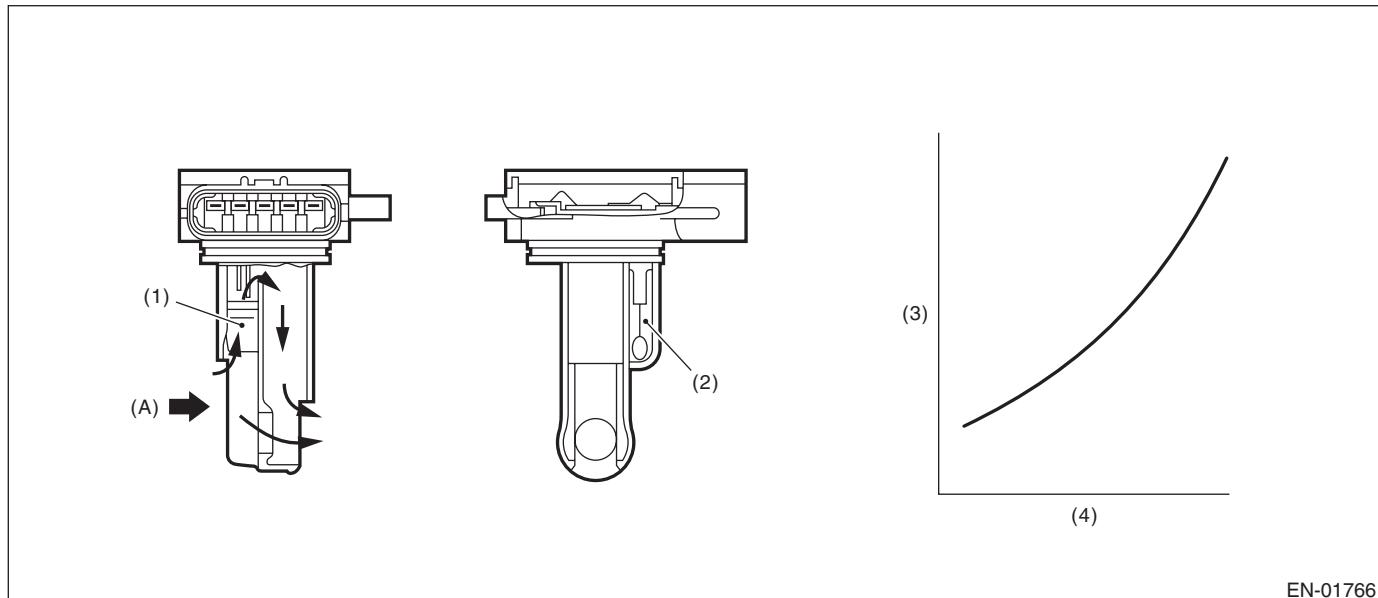
Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $> 0.2$ V       |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria


## GENERAL DESCRIPTION

### V: DTC P0103 MASS OR VOLUME AIR FLOW CIRCUIT HIGH INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuits of the air flow sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01766

(A) Air

(1) Air flow sensor

(3) Voltage (V)

(4) Amount of intake air (kg (lb)/s)

(2) Intake air temperature sensor

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 4.939$ V  |

**Time Needed for Diagnosis:** 500 ms

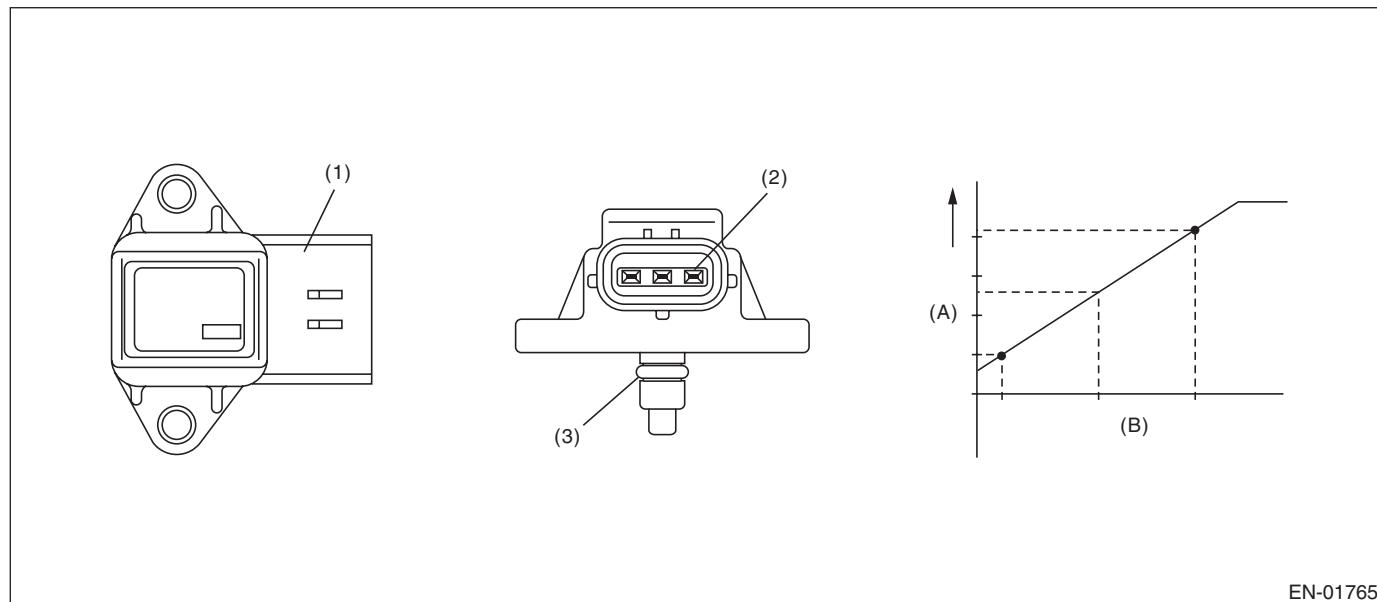
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $< 4.939$ V     |


**Time Needed for Diagnosis:** Less than 1 second

**W: DTC P0107 MANIFOLD ABSOLUTE PRESSURE/BAROMETRIC PRESSURE CIRCUIT LOW INPUT**

## 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of intake manifold pressure sensor.  
Judge as NG if out of specification.

## 2. COMPONENT DESCRIPTION



(1) Connector (2) Terminals

(3) O-ring

### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

## 5. DIAGNOSTIC METHOD

- **Abnormality Judgement**

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

## Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\leq 0.573$ V  |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

- **Normality Judgement**

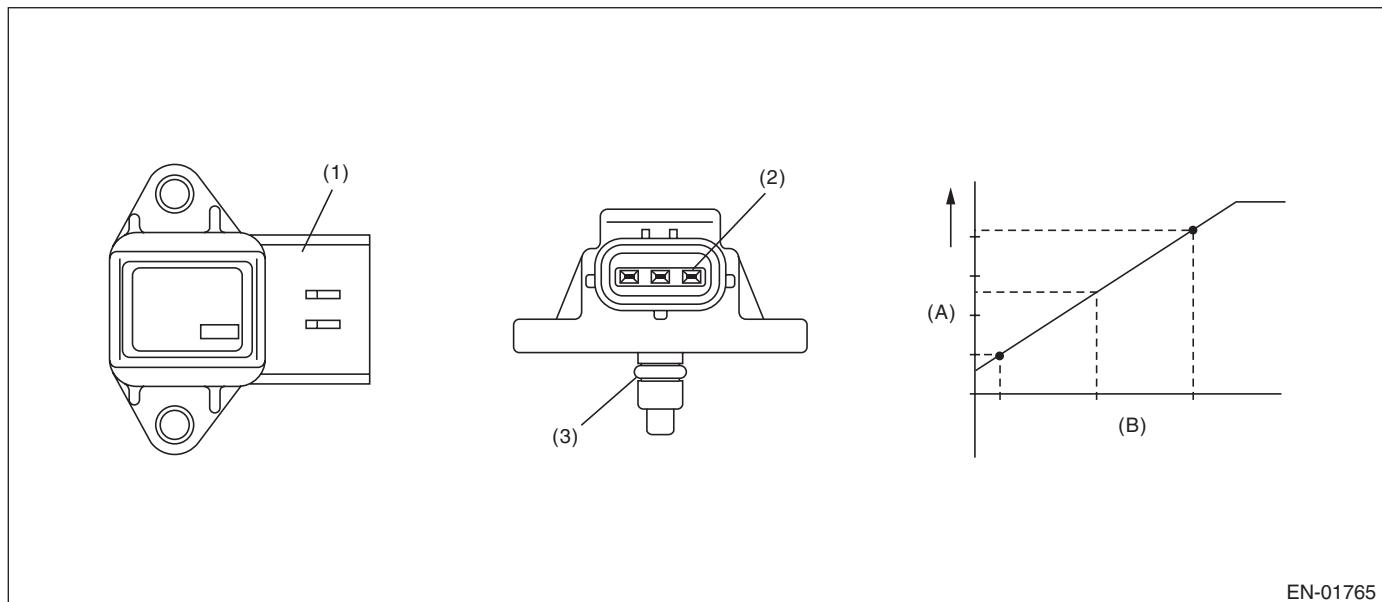
Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

## Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | > 0.573 V       |

**Time Needed for Diagnosis:** Less than 1 second

## Diagnostic Trouble Code (DTC) Detecting Criteria


## GENERAL DESCRIPTION

**X: DTC P0108 MANIFOLD ABSOLUTE PRESSURE/BAROMETRIC PRESSURE CIRCUIT HIGH INPUT**

## 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of intake manifold pressure sensor.  
Judge as NG if out of specification.

## 2. COMPONENT DESCRIPTION



(1) Connector (2) Terminals

(3) O-ring

### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

## 5. DIAGNOSTIC METHOD

- **Abnormality Judgement**

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

## Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 4.388$ V  |

**Time Needed for Diagnosis: 500 ms**

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

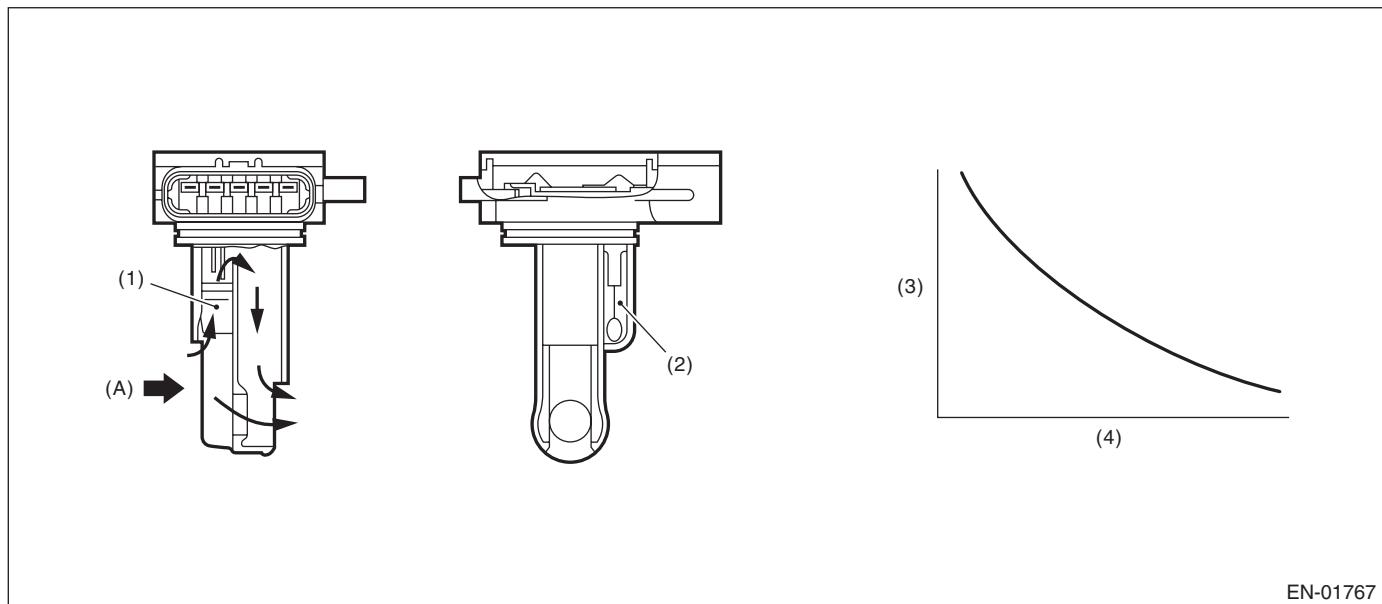
- **Normality Judgement**

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

## Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | < 4.388 V       |

**Time Needed for Diagnosis:** Less than 1 second


### Y: DTC P0111 INTAKE AIR TEMPERATURE SENSOR 1 CIRCUIT RANGE/ PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of intake air temperature sensor output property.

Judge as NG when the intake air temperature is not varied whereas it seemed to be varied from the viewpoint of engine condition.

#### 2. COMPONENT DESCRIPTION



EN-01767

(A) Air

(1) Air flow sensor

(3) Resistance value (Ω)

(4) Intake air temperature °C (°F)

(2) Intake air temperature sensor

#### 3. ENABLE CONDITION

| Secondary Parameters                                                   | Enable Conditions |
|------------------------------------------------------------------------|-------------------|
| Engine coolant temperature at engine starting                          | < 30 °C (86 °F)   |
| Engine coolant temperature                                             | ≥ 95 °C (203 °F)  |
| Battery voltage                                                        | ≥ 10.9 V          |
| Continuous time when the vehicle speed is less than 60 km/h (37.3 MPH) | ≥ 600 s           |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis when the vehicle speed condition is met after warming up from a cold condition.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

#### Judgement Value

| Malfunction Criteria                            | Threshold Value                                               |
|-------------------------------------------------|---------------------------------------------------------------|
| Output voltage difference between Max. and Min. | < 0.02 V(Equivalent to approximately 0.5°C (0.9°F) near 25°C) |

**Time Needed for Diagnosis:** Less than 1 second

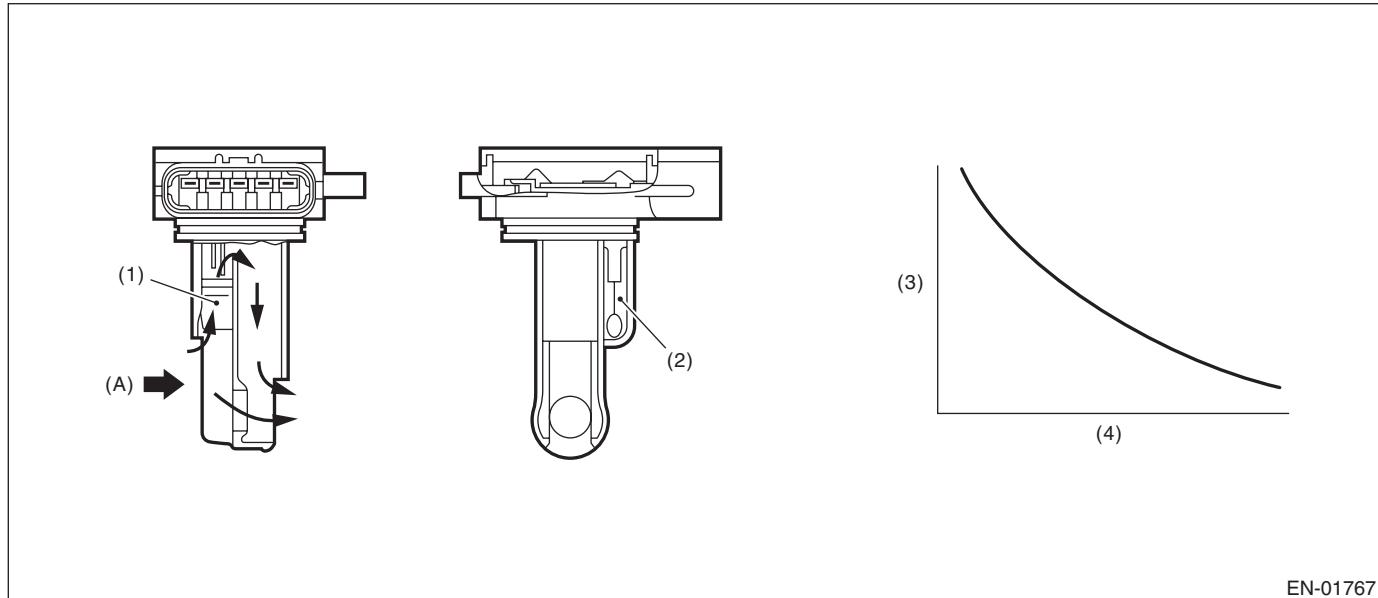
**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the following conditions are established.

#### Judgement Value

| Malfunction Criteria                            | Threshold Value |
|-------------------------------------------------|-----------------|
| Output voltage difference between Max. and Min. | $\geq 0.02$ V   |


**Time Needed for Diagnosis:** Less than 1 second

### Z: DTC P0112 INTAKE AIR TEMPERATURE SENSOR 1 CIRCUIT LOW

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of the intake air temperature sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01767

(A) Air

(1) Air flow sensor

(3) Resistance value (Ω)

(4) Intake air temperature °C (°F)

(2) Intake air temperature sensor

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | < 0.231 V       |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

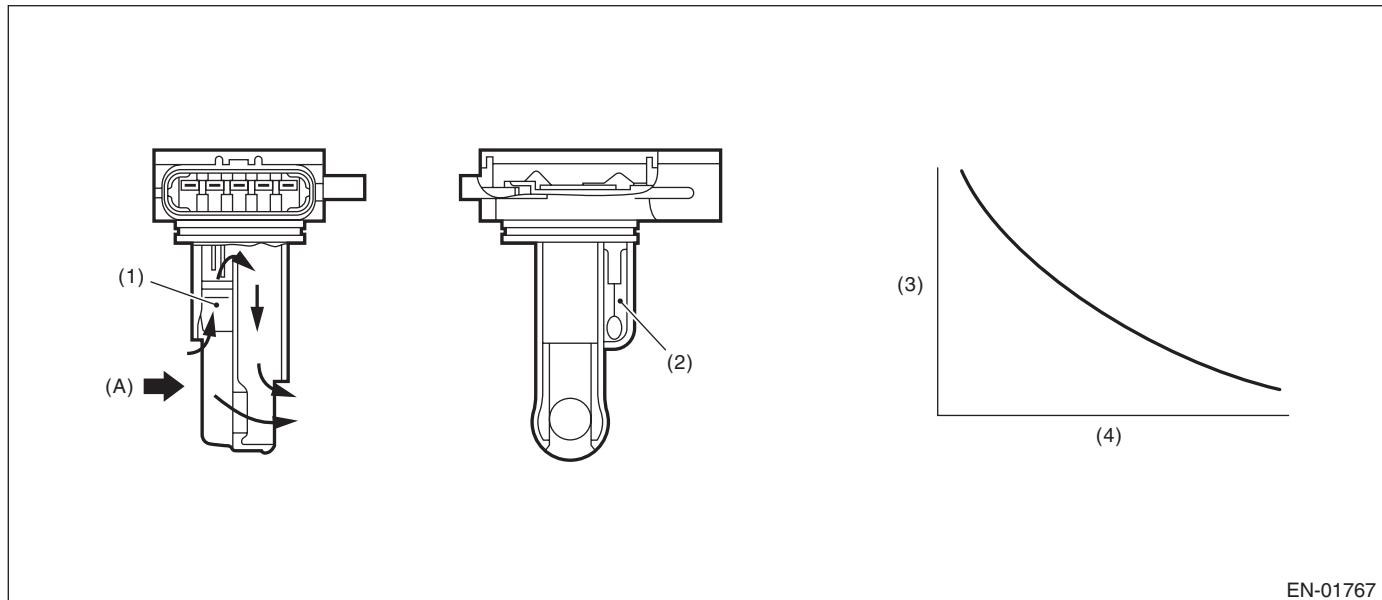
Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 0.231$ V  |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria


## GENERAL DESCRIPTION

### AA:DTC P0113 INTAKE AIR TEMPERATURE SENSOR 1 CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of the intake air temperature sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01767

(A) Air

(1) Air flow sensor

(3) Resistance value (Ω)

(4) Intake air temperature °C (°F)

(2) Intake air temperature sensor

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

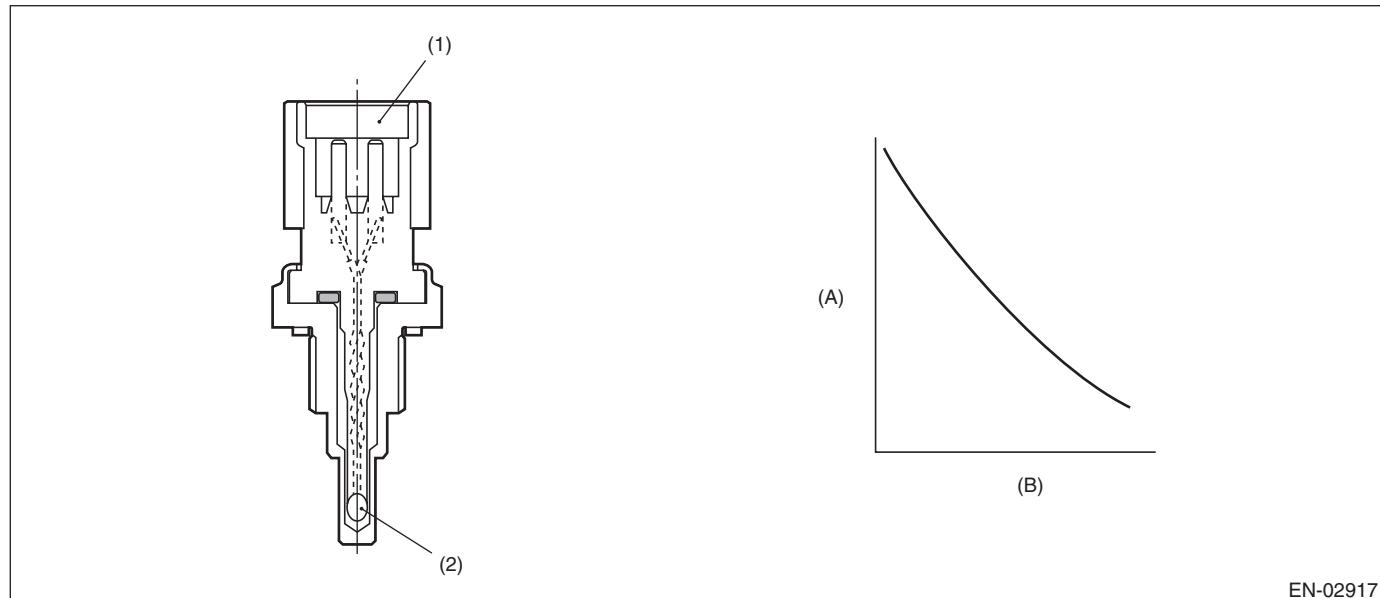
| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 4.716$ V  |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.


##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $< 4.716$ V     |

**Time Needed for Diagnosis:** Less than 1 second

**AB:DTC P0117 ENGINE COOLANT TEMPERATURE CIRCUIT LOW****1. OUTLINE OF DIAGNOSIS**

Detect the open or short circuit of the engine coolant temperature sensor.  
Judge as NG if out of specification.

**2. COMPONENT DESCRIPTION**

(A) Resistance value (kΩ) (B) Temperature °C (°F)

(1) Connector (2) Thermistor element

**3. ENABLE CONDITION**

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

**4. GENERAL DRIVING CYCLE**

Always perform the diagnosis continuously.

**5. DIAGNOSTIC METHOD****• Abnormality Judgement**

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

**Judgement Value**

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | < 0.265 V       |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

**• Normality Judgement**

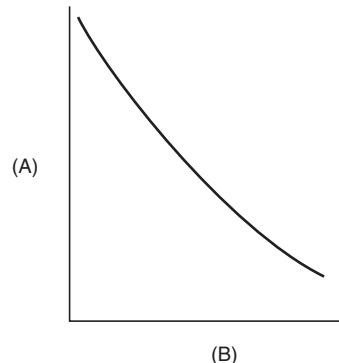
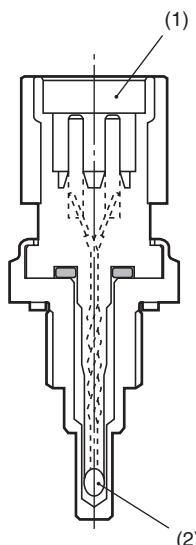
Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

**Judgement Value**

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | ≥ 0.265 V       |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria



## GENERAL DESCRIPTION

### AC:DTC P0118 ENGINE COOLANT TEMPERATURE CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the engine coolant temperature sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-02917

(A) Resistance value (kΩ) (B) Temperature °C (°F)

(1) Connector (2) Thermistor element

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 4.716$ V  |

**Time Needed for Diagnosis:** 500 ms

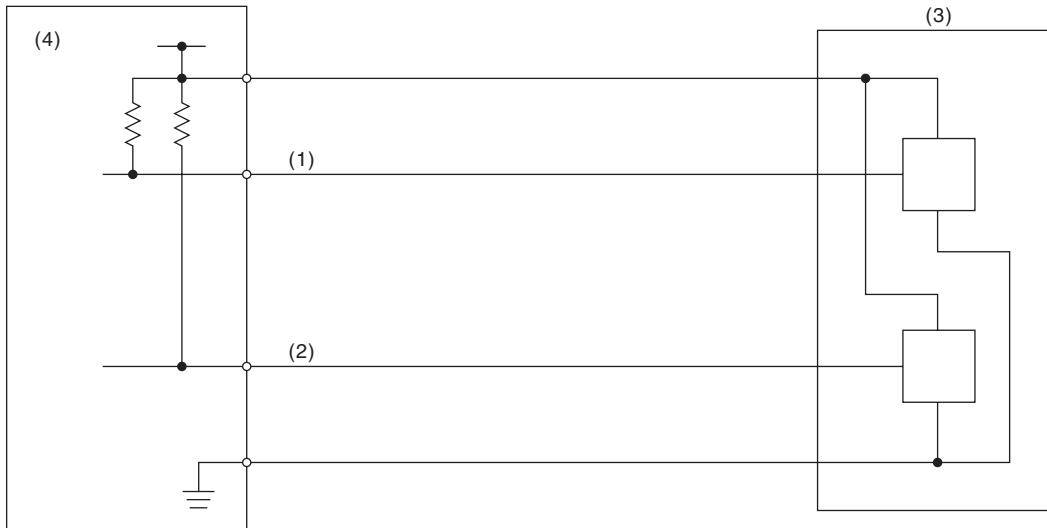
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $< 4.716$ V     |


**Time Needed for Diagnosis:** Less than 1 second

### AD:DTC P0122 THROTTLE/PEDAL POSITION SENSOR/SWITCH “A” CIRCUIT LOW

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of throttle position sensor 1.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01859

(1) Throttle position sensor 1 signal  
(2) Throttle position sensor 2 signal

(3) Throttle position sensor

(4) Engine control module (ECM)

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | $\leq 0.217$ V  |

**Time Needed for Diagnosis:** 24 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

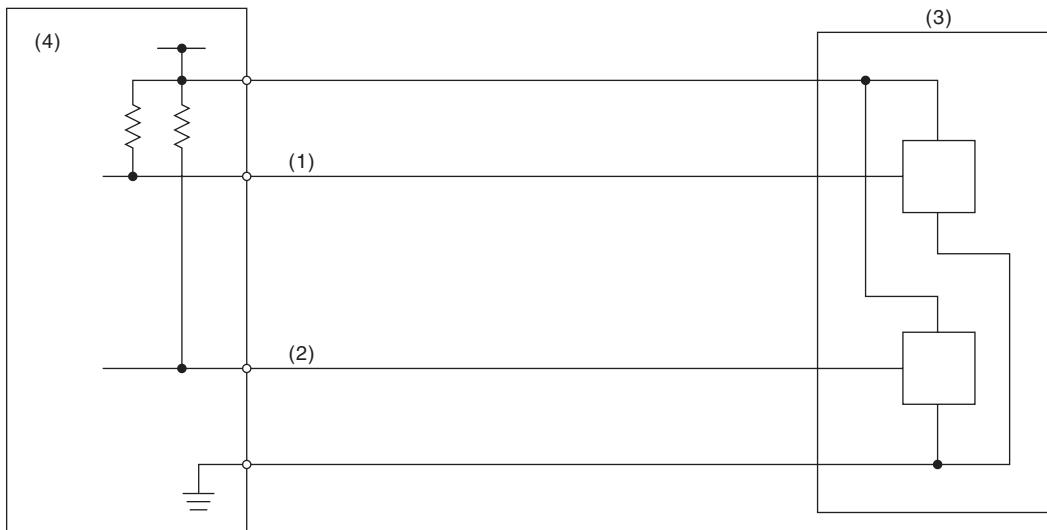
Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | $> 0.217$ V     |

**Time Needed for Diagnosis:** 24 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria


## GENERAL DESCRIPTION

### AE:DTC P0123 THROTTLE/PEDAL POSITION SENSOR/SWITCH “A” CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of throttle position sensor 1.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01859

(1) Throttle position sensor 1 signal  
(2) Throttle position sensor 2 signal

(3) Throttle position sensor

(4) Engine control module (ECM)

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | $\geq 4.858$ V  |

**Time Needed for Diagnosis:** 24 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

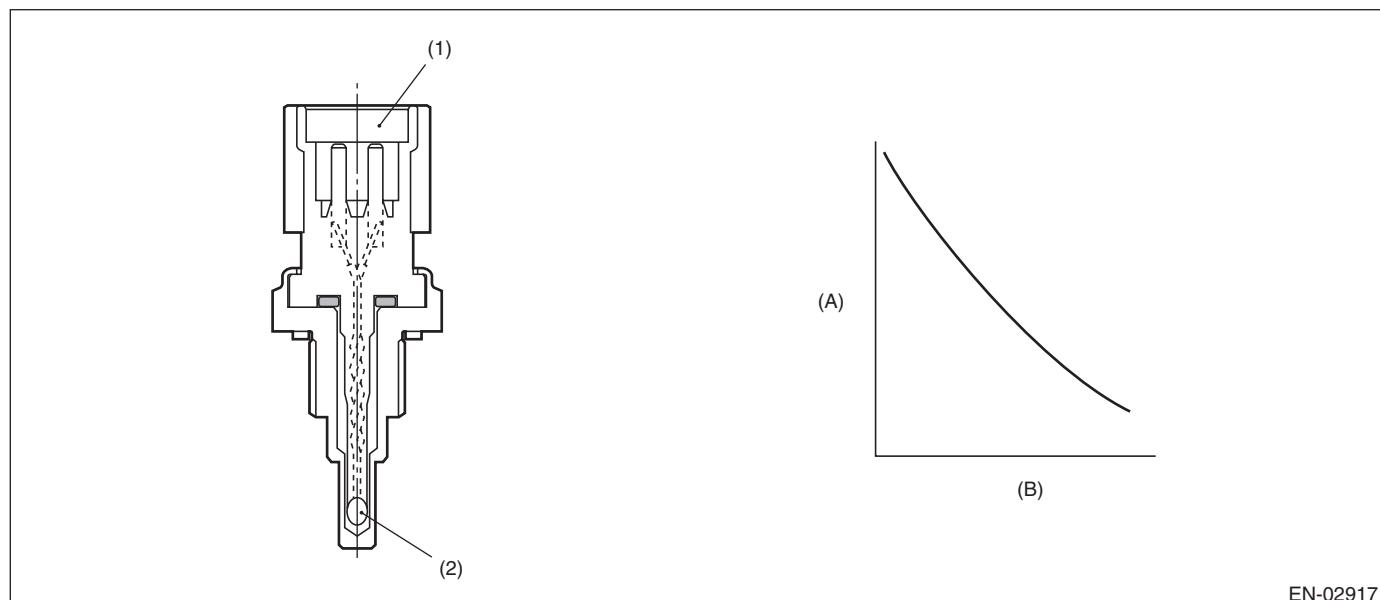
##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | $< 4.858$ V     |

**Time Needed for Diagnosis:** 24 ms


### AF:DTC P0125 INSUFFICIENT COOLANT TEMPERATURE FOR CLOSED LOOP FUEL CONTROL

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of engine coolant temperature output property.

Judge as NG when the engine coolant temperature does not rise in driving conditions where it should.

#### 2. COMPONENT DESCRIPTION



EN-02917

(A) Resistance value (kΩ)

(B) Temperature °C (°F)

(1) Connector

(2) Thermistor element

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Engine speed         | ≥ Value from Map  |
| Battery voltage      | ≥ 10.9 V          |

#### Map

|                                       |              |              |             |             |           |            |            |            |
|---------------------------------------|--------------|--------------|-------------|-------------|-----------|------------|------------|------------|
| Engine coolant temperature<br>°C (°F) | -40<br>(-40) | -30<br>(-22) | -20<br>(-4) | -10<br>(14) | 0<br>(32) | 10<br>(50) | 20<br>(68) | 30<br>(86) |
| Engine speed<br>rpm                   | 500          | 500          | 500         | 500         | 500       | 500        | 500        | 500        |

|                                       |             |             |             |             |             |             |              |              |
|---------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|
| Engine coolant temperature<br>°C (°F) | 40<br>(104) | 50<br>(122) | 60<br>(140) | 70<br>(158) | 80<br>(176) | 90<br>(194) | 100<br>(212) | 110<br>(230) |
| Engine speed<br>rpm                   | 500         | 500         | 500         | 500         | 500         | 500         | 500          | 500          |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis only once after engine start.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG if the criteria below are met.

#### Judgement Value

| Malfunction Criteria                   | Threshold Value                               |
|----------------------------------------|-----------------------------------------------|
| Engine coolant temperature             | < 20 °C (68 °F)                               |
| Timer for diagnosis after engine start | ≥ Judgement value of timer after engine start |

Timer for diagnosis after engine start

- Timer stop at fuel cut
- During the driving conditions except a) above, timer counts up as follows.

64 milliseconds + TWCNT milliseconds (the time of at 64 milliseconds)

TWCNT is defined as follows,

TWCNT = 0 at idle switch ON,

TWCNT show on the following table at idle switch OFF.

|                     |          | Vehicle speed km/h (MPH) |           |           |           |           |           |           |           |
|---------------------|----------|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                     |          | 0 (0)                    | 8 (5)     | 16 (9.9)  | 24 (14.9) | 32 (19.9) | 40 (24.9) | 48 (29.8) | 56 (34.8) |
| Temperature °C (°F) | -20 (-4) | 0 ms                     | 37.136 ms | 74.272 ms | 111.41 ms | 126.66 ms | 141.91 ms | 163.59 ms | 185.26 ms |
|                     | -10 (14) | 0 ms                     | 27.391 ms | 54.782 ms | 82.173 ms | 99.65 ms  | 117.13 ms | 135.96 ms | 154.8 ms  |
|                     | 0 (32)   | 0 ms                     | 17.646 ms | 35.292 ms | 52.938 ms | 72.64 ms  | 92.341 ms | 108.34 ms | 124.33 ms |
|                     | 10 (50)  | 0 ms                     | 7.9012 ms | 15.802 ms | 23.704 ms | 45 ms     | 45 ms     | 50 ms     | 50 ms     |
|                     | 20 (68)  | 0 ms                     | 7.9012 ms | 15.802 ms | 23.704 ms | 45 ms     | 45 ms     | 50 ms     | 50 ms     |

Judgement value of timer after engine starting

$$t = 429523 \text{ ms} - 28605 \text{ ms} \times Ti$$

Ti : The lowest coolant temperature after engine start

**Time Needed for Diagnosis:** Less than 1 second

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

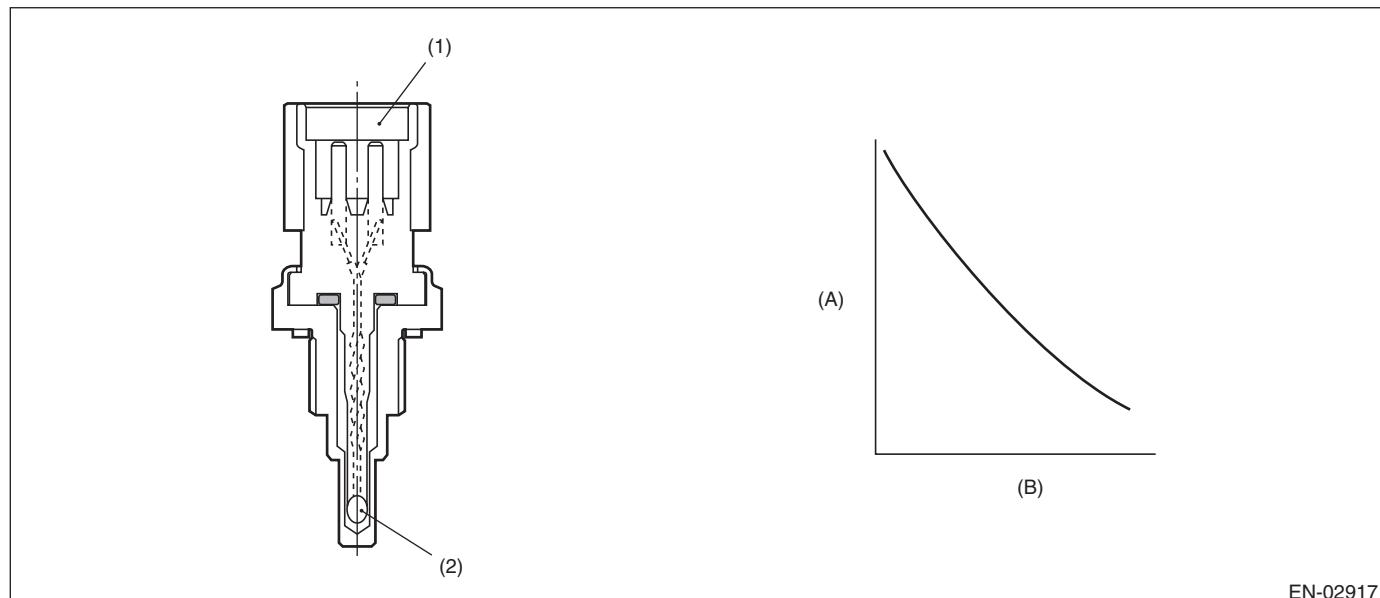
#### • Normality Judgement

Judge as OK and clear the NG when the malfunction criteria below are met.

#### Judgement Value

| Malfunction Criteria       | Threshold Value |
|----------------------------|-----------------|
| Engine coolant temperature | ≥ 20 °C (68 °F) |

**Time Needed for Diagnosis:** Less than 1 second


### AG:DTC P0126 INSUFFICIENT ENGINE COOLANT TEMPERATURE FOR STABLE OPERATION

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of the engine coolant temperature sensor characteristics.

Memorize the engine coolant temperature and fuel temperature at the last engine stop, and use them to judge as NG when the engine coolant temperature does not decrease when it should.

#### 2. COMPONENT DESCRIPTION



EN-02917

(A) Resistance value (kΩ)

(B) Temperature °C (°F)

(1) Connector

(2) Thermistor element

#### 3. ENABLE CONDITION

| Secondary Parameters                                              | Enable Conditions                      |
|-------------------------------------------------------------------|----------------------------------------|
| Battery voltage                                                   | $\geq 10.9$ V                          |
| Refueling from the last engine stop till the current engine start | None                                   |
| Fuel level                                                        | $\geq 15$ ℥ (3.96 US gal, 3.3 Imp gal) |
| Engine coolant temperature at the last engine stop                | $\geq 75$ °C (167 °F)                  |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis only once after starting the engine.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                                                                           | Threshold Value    |
|----------------------------------------------------------------------------------------------------------------|--------------------|
| Engine coolant temperature at the last engine stop — Minimum engine coolant temperature after the engine start | < 2.5 °C (36.5 °F) |
| Fuel temperature at the last engine stop — fuel temperature                                                    | ≥ 5 °C (41 °F)     |
| Intake air temperature — fuel temperature                                                                      | < 2.5 °C (36.5 °F) |
| Fuel temperature                                                                                               | < 35 °C (95 °F)    |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

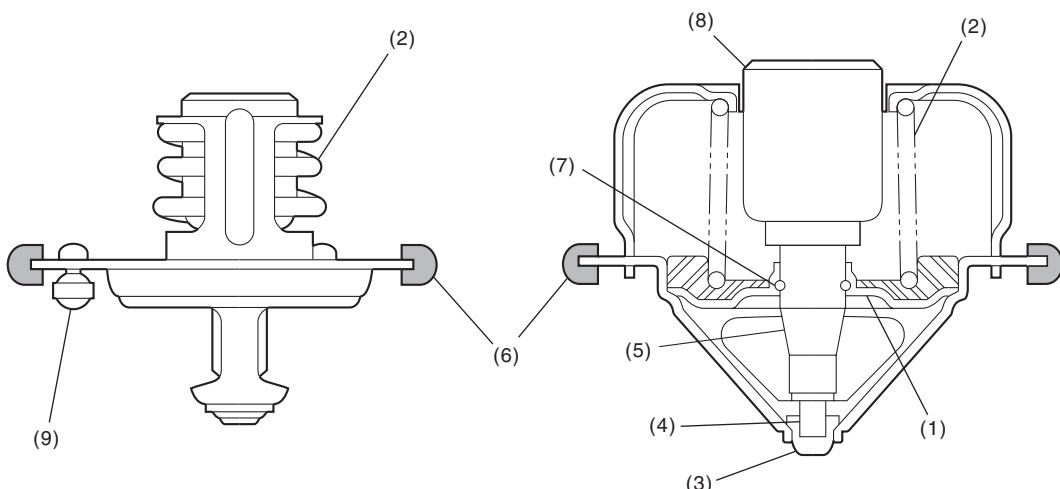
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                                                                                           | Threshold Value    |
|----------------------------------------------------------------------------------------------------------------|--------------------|
| Engine coolant temperature at the last engine stop — Minimum engine coolant temperature after the engine start | ≥ 2.5 °C (36.5 °F) |

**Time Needed for Diagnosis:** Less than 1 second


### AH:DTC P0128 COOLANT THERMOSTAT (ENGINE COOLANT TEMPERATURE BELOW THERMOSTAT REGULATING TEMPERATURE)

#### 1. OUTLINE OF DIAGNOSIS

Detect malfunctions of the thermostat function.

Judge as NG when the engine coolant temperature is lower than the estimated engine coolant temperature and the difference between them is large. Judge as OK when the engine coolant temperature becomes to 75°C (167°F), and the difference is small, before judging NG.

#### 2. COMPONENT DESCRIPTION



EN-01692

|             |                 |                  |
|-------------|-----------------|------------------|
| (1) Valve   | (4) Piston      | (7) Stop ring    |
| (2) Spring  | (5) Guide       | (8) Wax element  |
| (3) Stopper | (6) Rubber seal | (9) Jiggle valve |

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                              | Threshold Value                                               |
|---------------------------------------------------|---------------------------------------------------------------|
| Battery voltage                                   | $\geq 10.9 \text{ V}$                                         |
| Estimate ambient temperature                      | $\geq -7 \text{ }^{\circ}\text{C}$ (19.4 $^{\circ}\text{F}$ ) |
| Thermostat malfunction diagnosis                  | Incomplete                                                    |
| Engine coolant temperature at engine starting     | $< 55 \text{ }^{\circ}\text{C}$ (131 $^{\circ}\text{F}$ )     |
| Estimated coolant temperature                     | $\geq 75 \text{ }^{\circ}\text{C}$ (167 $^{\circ}\text{F}$ )  |
| Engine coolant temperature                        | $\leq 75 \text{ }^{\circ}\text{C}$ (167 $^{\circ}\text{F}$ )  |
| (Estimated – Measured) Engine coolant temperature | $> 20 \text{ }^{\circ}\text{C}$ (68 $^{\circ}\text{F}$ )      |
| Vehicle speed                                     | $\geq 20 \text{ km/h}$ (12.4 MPH)                             |

**Time Needed for Diagnosis:** 64 ms  $\times$  3 time(s)  $\times$  120 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

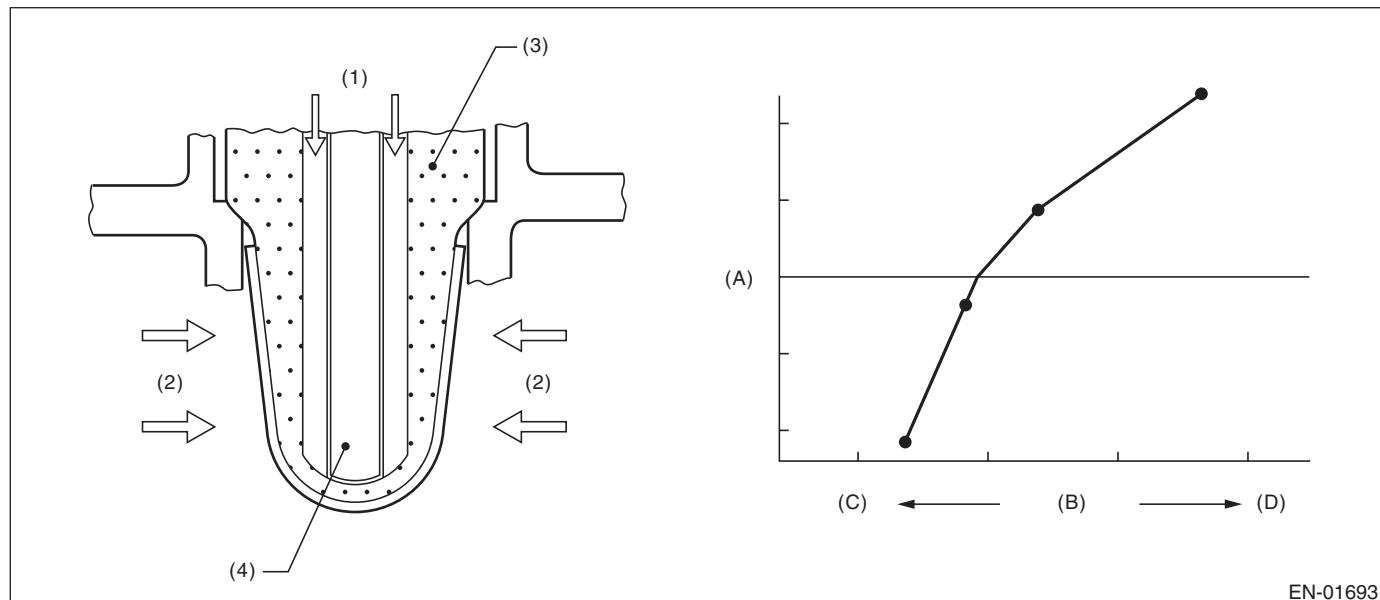
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                              | Threshold Value                                               |
|---------------------------------------------------|---------------------------------------------------------------|
| Battery voltage                                   | $\geq 10.9 \text{ V}$                                         |
| Estimate ambient temperature                      | $\geq -7 \text{ }^{\circ}\text{C}$ (19.4 $^{\circ}\text{F}$ ) |
| Thermostat malfunction diagnosis                  | Incomplete                                                    |
| Engine coolant temperature at engine starting     | $< 55 \text{ }^{\circ}\text{C}$ (131 $^{\circ}\text{F}$ )     |
| Engine coolant temperature                        | $\geq 75 \text{ }^{\circ}\text{C}$ (167 $^{\circ}\text{F}$ )  |
| (Estimated – Measured) Engine coolant temperature | $\leq 20 \text{ }^{\circ}\text{C}$ (68 $^{\circ}\text{F}$ )   |

**Time Needed for Diagnosis:** Less than 1 second


### AI: DTC P0131 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 1 SENSOR 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of sensor.

Judge as NG, when the element voltage is out of the specified range.

#### 2. COMPONENT DESCRIPTION



EN-01693

(A) Electromotive force  
(B) Air fuel ratio

(C) Lean

(D) Rich

(1) Atmosphere  
(2) Exhaust gas

(3)  $\text{ZrO}_2$

(4) Ceramic heater

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions     |
|----------------------|-----------------------|
| Battery voltage      | $\geq 10.9 \text{ V}$ |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                          | Threshold Value |
|-----------------------------------------------|-----------------|
| Input voltage (+)                             | < 1.128 V       |
| or                                            |                 |
| Input voltage (-)                             | < 0.230 V       |
| or                                            |                 |
| $ Input\ voltage\ (+) - Input\ voltage\ (-) $ | < 0.644 V       |

#### Time Needed for Diagnosis:

Input voltage (+): 1000 ms

Input voltage (-): 1000 ms

$|Input\ voltage\ (+) - Input\ voltage\ (-)|$ : 1000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

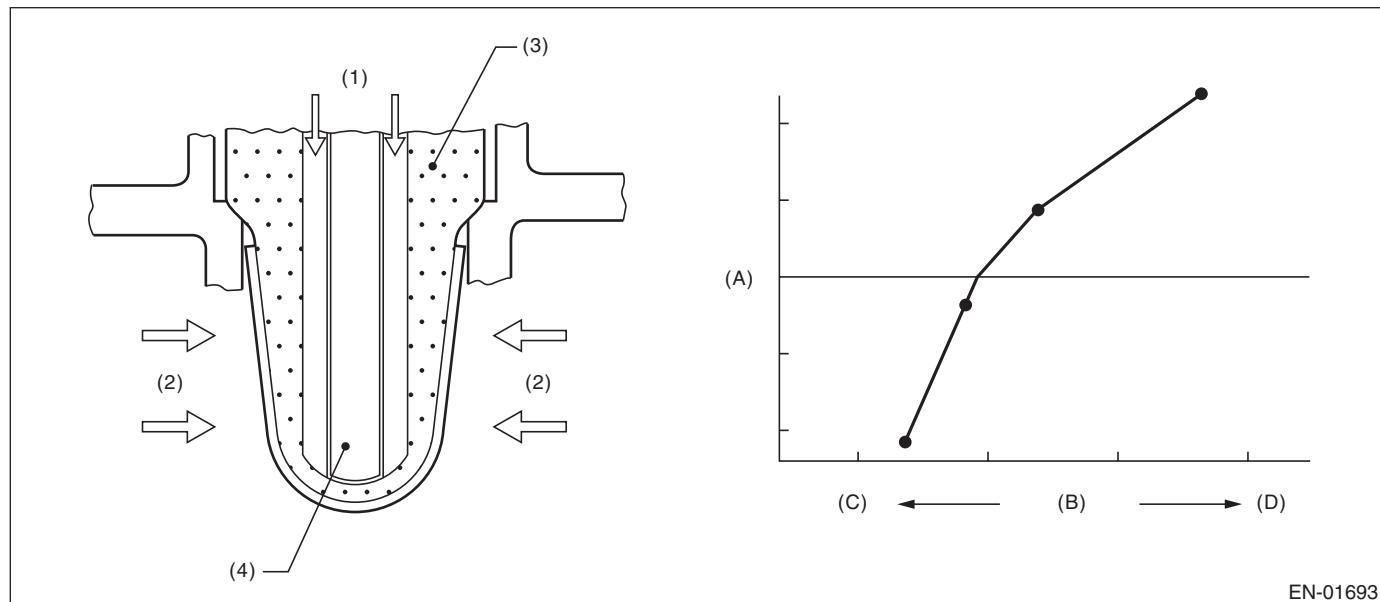
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                          | Threshold Value |
|-----------------------------------------------|-----------------|
| Input voltage (+)                             | $\geq 1.128\ V$ |
| Input voltage (-)                             | $\geq 0.230\ V$ |
| $ Input\ voltage\ (+) - Input\ voltage\ (-) $ | $\geq 0.644\ V$ |

**Time Needed for Diagnosis:** Less than 1 second


### AJ:DTC P0132 O2 SENSOR CIRCUIT HIGH VOLTAGE (BANK 1 SENSOR 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of sensor.

Judge as NG, when the element voltage is out of the specified range.

#### 2. COMPONENT DESCRIPTION



EN-01693

(A) Electromotive force  
(B) Air fuel ratio

(C) Lean

(D) Rich

(1) Atmosphere  
(2) Exhaust gas

(3)  $\text{ZrO}_2$

(4) Ceramic heater

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions     |
|----------------------|-----------------------|
| Battery voltage      | $\geq 10.9 \text{ V}$ |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Input voltage (+)    | > 3.589 V       |
| or                   |                 |
| Input voltage (-)    | > 3.541 V       |

#### Time Needed for Diagnosis:

Input voltage (+): 1000 ms

Input voltage (-): 1000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

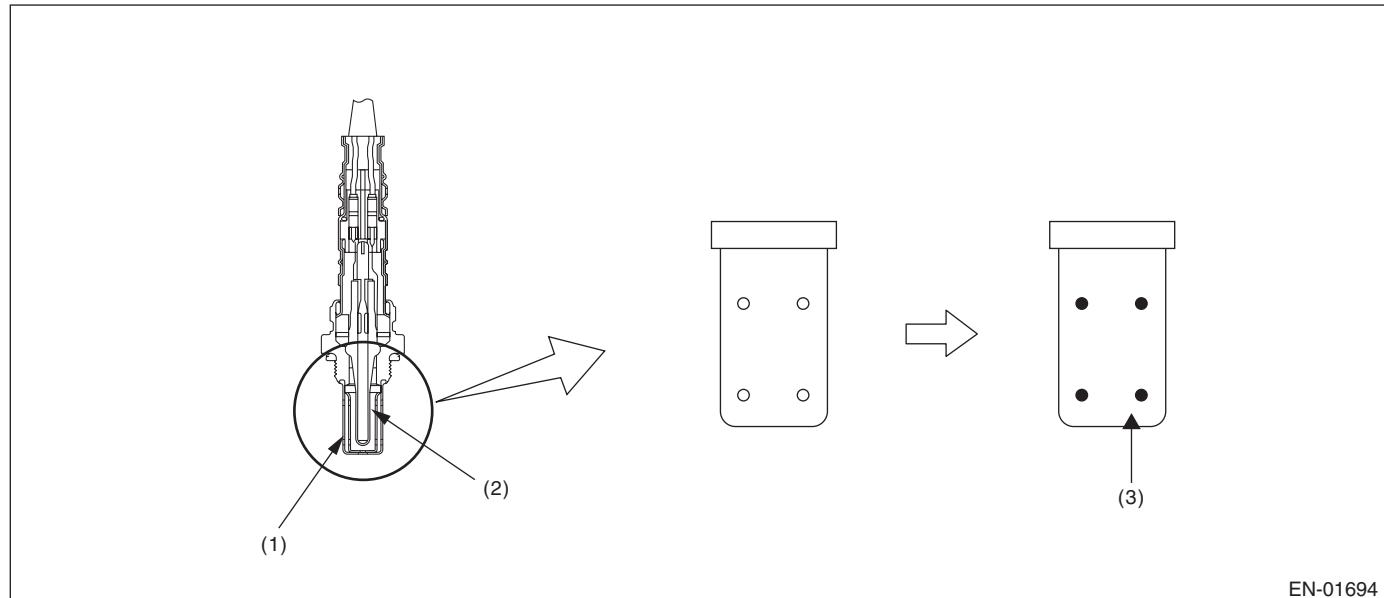
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Input voltage (+)    | $\leq$ 3.589 V  |
| Input voltage (-)    | $\leq$ 3.541 V  |

**Time Needed for Diagnosis:** Less than 1 second


### AK:DTC P0133 O2 SENSOR CIRCUIT SLOW RESPONSE (BANK 1 SENSOR 1)

#### 1. OUTLINE OF DIAGNOSIS

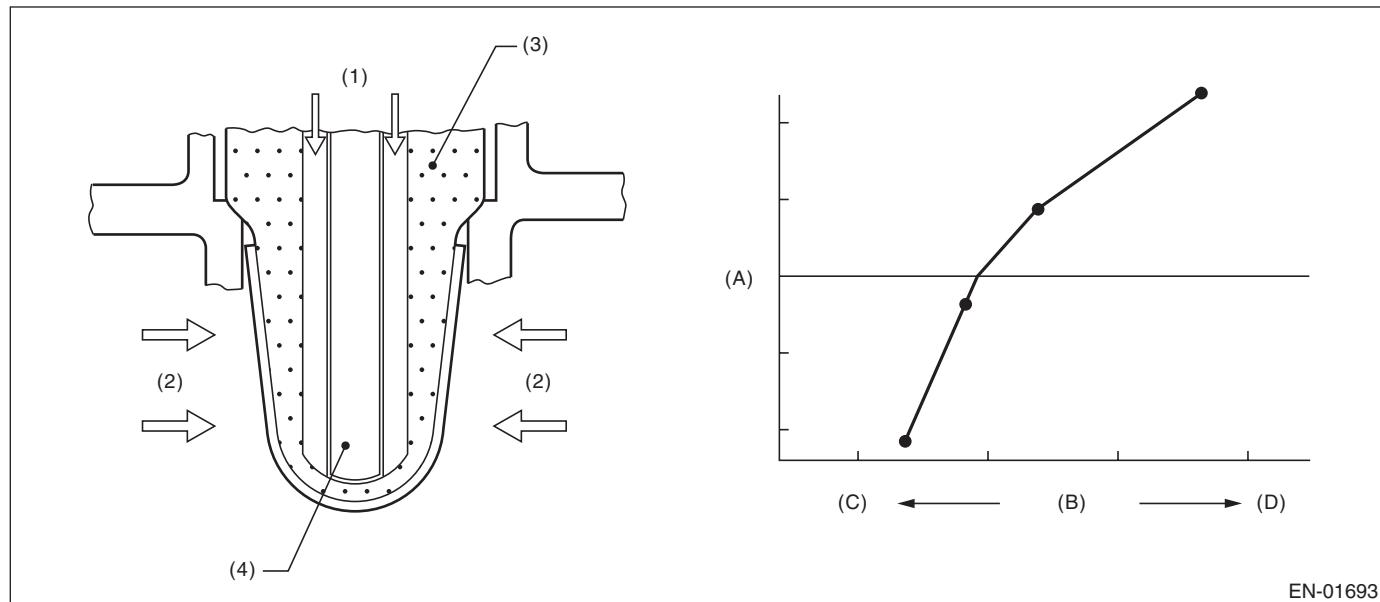
Detect the slow response of front oxygen (A/F) sensor.

Front oxygen (A/F) sensor cover has some ventilation holes for exhaust gas. Clogged ventilation holes are diagnosed.

When the holes are clogged, the A/F output variation becomes slow comparing with the actual A/F variation because oxygen which reaches the zirconia layer is insufficient. Therefore, if the sensor cover holes are clogged, the rich to lean judgement in the ECM is delayed when the actual change from rich to lean occurs. Judge as NG when the actual movement in comparison to the ECM control amount is slow.



(1) Cover


(2) Zirconia

(3) Clogging

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

## 2. COMPONENT DESCRIPTION



EN-01693

(A) Electromotive force  
(B) Air fuel ratio

(C) Lean

(D) Rich

(1) Atmosphere  
(2) Exhaust gas

(3)  $\text{ZrO}_2$

(4) Ceramic heater

## 3. ENABLE CONDITION

| Secondary Parameters                                                | Enable Conditions                                                 |
|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Time needed for all secondary parameters to be in enable conditions | $\geq 1024 \text{ ms}$                                            |
| Battery voltage                                                     | $\geq 10.9 \text{ V}$                                             |
| Barometric pressure                                                 | $> 75 \text{ kPa (563 mmHg, 22.2 inHg)}$                          |
| Closed loop control with main feedback                              | Operation                                                         |
| Front oxygen (A/F) sensor impedance                                 | $0 \Omega - 50 \Omega$                                            |
| Elapsed time after starting the engine                              | $\geq 120000 \text{ ms}$                                          |
| Engine coolant temperature                                          | $\geq 75 \text{ }^{\circ}\text{C} (167 \text{ }^{\circ}\text{F})$ |
| Engine speed                                                        | $1000 \text{ rpm} - 2500 \text{ rpm}$                             |
| Vehicle speed                                                       | $10 \text{ km/h} - 120 \text{ km/h (6.2 MPH - 74.6 MPH)}$         |
| Amount of intake air                                                | $10 \text{ g/s} - 40 \text{ g/s (0.35 oz/s - 1.41 oz/s)}$         |
| Engine load                                                         | $< 0.02 \text{ g/rev (0 oz/rev)}$                                 |
| Learning value of EVAP conc. during purge                           | $< 0.2$                                                           |
| Total time of operating canister purge                              | $\geq 19.9 \text{ s}$                                             |

## 4. GENERAL DRIVING CYCLE

Perform diagnosis only once at a constant speed of  $10 \text{ km/h} - 120 \text{ km/h (6.2 MPH - 74.6 MPH)}$   $120000 \text{ ms}$  or more after starting the engine.

### 5. DIAGNOSTIC METHOD

Calculate  $faf$  difference and the  $\lambda$  value difference every  $32\text{ms} \times 4$ . Calculate the diagnosis value after calculating 820 time(s).

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Threshold Value |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| $\text{parafca} = \text{td2faf}/\text{td2lmd}$<br>where,<br>$\text{td2faf (N)} = \text{td2faf (n-1)} +  \text{d2faf (n)} $<br>$\text{td2lmd (N)} = \text{td2lmd (n-1)} +  \text{d2lmd (n)} $<br>add up to $32\text{ ms} \times 4 \times 820$ time(s).<br>$\text{d2faf (n)} = (\text{faf (n)} - \text{faf (n-1)}) - (\text{faf (n-1)} - \text{faf (n-2)})$<br>$\text{d2lmd (n)} = (\text{lmd (n)} - \text{lmd (n-1)}) - (\text{lmd (n-1)} - \text{lmd (n-2)})$<br>$\text{faf}$ = main feedback compensation coefficient every 128 milliseconds<br>$\text{lmd}$ = output lambda every 128 milliseconds | $> 0.2$         |

**Time Needed for Diagnosis:**  $32\text{ ms} \times 4 \times 820$  time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

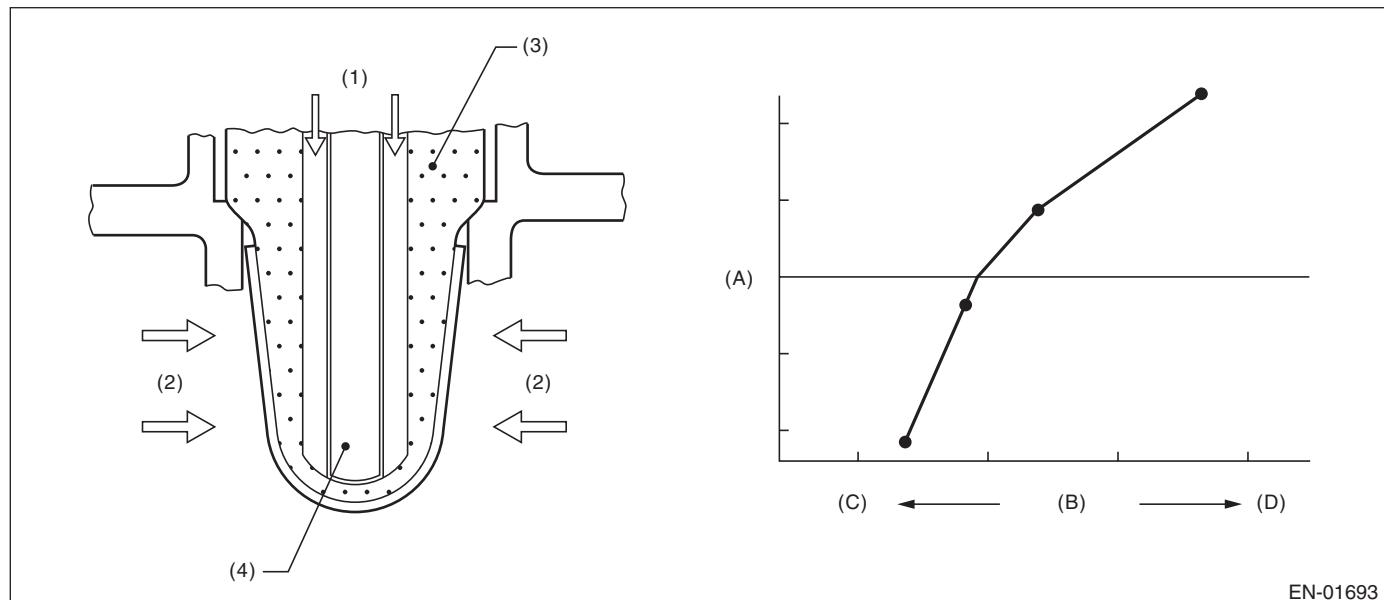
##### Judgement Value

| Malfunction Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Threshold Value |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| $\text{parafca} = \text{td2faf}/\text{td2lmd}$<br>where,<br>$\text{td2faf (N)} = \text{td2faf (n-1)} +  \text{d2faf (n)} $<br>$\text{td2lmd (N)} = \text{td2lmd (n-1)} +  \text{d2lmd (n)} $<br>add up to $32\text{ ms} \times 4 \times 820$ time(s).<br>$\text{d2faf (n)} = (\text{faf (n)} - \text{faf (n-1)}) - (\text{faf (n-1)} - \text{faf (n-2)})$<br>$\text{d2lmd (n)} = (\text{lmd (n)} - \text{lmd (n-1)}) - (\text{lmd (n-1)} - \text{lmd (n-2)})$<br>$\text{faf}$ = main feedback compensation coefficient every 128 milliseconds<br>$\text{lmd}$ = output lambda every 128 milliseconds | $\leq 0.2$      |

**Time Needed for Diagnosis:**  $32\text{ ms} \times 4 \times 820$  time(s)

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION


### AL:DTC P0134 O2 SENSOR CIRCUIT NO ACTIVITY DETECTED (BANK 1 SENSOR 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect open circuits of the sensor.

Judge as NG when the impedance of the element is large.

#### 2. COMPONENT DESCRIPTION



EN-01693

(A) Electromotive force  
(B) Air fuel ratio

(C) Lean

(D) Rich

(1) Atmosphere  
(2) Exhaust gas

(3)  $\text{ZrO}_2$

(4) Ceramic heater

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                        | Threshold Value         |
|---------------------------------------------|-------------------------|
| Battery voltage                             | $\geq 10.9 \text{ V}$   |
| Time of heater control duty at 70 % or more | $\geq 30000 \text{ ms}$ |
| Front oxygen (A/F) sensor impedance.        | $> 500 \Omega$          |

**Time Needed for Diagnosis:** 5000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

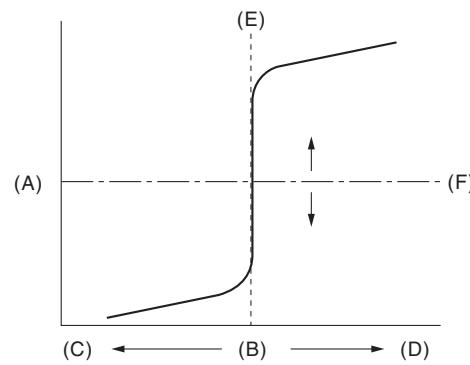
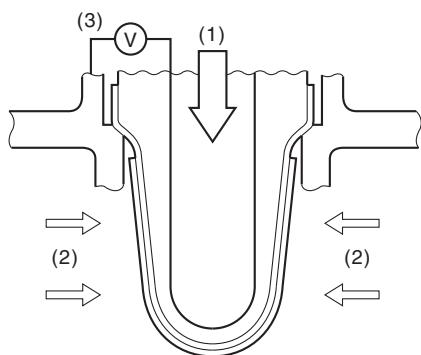
Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                 | Threshold Value       |
|--------------------------------------|-----------------------|
| Battery voltage                      | $\geq 10.9 \text{ V}$ |
| Front oxygen (A/F) sensor impedance. | $\leq 500 \Omega$     |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria



## GENERAL DESCRIPTION

### AM:DTC P0137 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 1 SENSOR 2)

#### 1. OUTLINE OF DIAGNOSIS

Detect continuity NG of the oxygen sensor. If the oxygen sensor voltage reading is not within the probable range considering the operating conditions, judge as NG.

#### 2. COMPONENT DESCRIPTION



EN-01696

|                         |                 |                                |
|-------------------------|-----------------|--------------------------------|
| (A) Electromotive force | (C) Rich        | (E) Theoretical air fuel ratio |
| (B) Air fuel ratio      | (D) Lean        | (F) Comparative voltage        |
| (1) Atmosphere          | (2) Exhaust gas | (3) Electromotive force        |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 3. ENABLE CONDITION

#### Used for abnormality judgement

| Secondary Parameters                                       | Enable Conditions         |
|------------------------------------------------------------|---------------------------|
| <b>High</b>                                                |                           |
| Secondary air system                                       | Not in operation          |
| Closed loop control at the oxygen sensor                   | In operation              |
| Misfire detection every 200 rotations                      | < 7 time(s)               |
| Front oxygen (A/F) sensor compensation coefficient         | Not in limit value        |
| Battery voltage                                            | $\geq 10.9$ V             |
| Engine coolant temperature                                 | $\geq 75$ °C (167 °F)     |
| <b>Low (1)</b>                                             |                           |
| Secondary air system                                       | Not in operation          |
| Closed loop control at the oxygen sensor                   | In operation              |
| Misfire detection every 200 rotations                      | < 7 time(s)               |
| Front oxygen (A/F) sensor compensation coefficient         | Not in limit value        |
| Battery voltage                                            | $\geq 10.9$ V             |
| Engine coolant temperature                                 | $\geq 75$ °C (167 °F)     |
| Amount of intake air                                       | $\geq 10$ g/s (0.35 oz/s) |
| <b>Low (2)</b>                                             |                           |
| Secondary air system                                       | Not in operation          |
| Closed loop control at the oxygen sensor                   | In operation              |
| Misfire detection every 200 rotations                      | < 7 time(s)               |
| Front oxygen (A/F) sensor compensation coefficient         | Not in limit value        |
| Battery voltage                                            | $\geq 10.9$ V             |
| Engine coolant temperature                                 | $\geq 75$ °C (167 °F)     |
| Amount of intake air                                       | $< 10$ g/s (0.35 oz/s)    |
| Current continuation time of the rear oxygen sensor heater | $\geq 25000$ ms           |
| <b>Low (3)</b>                                             |                           |
| Secondary air system                                       | Not in operation          |
| Closed loop control at the oxygen sensor                   | In operation              |
| Misfire detection every 200 rotations                      | < 7 time(s)               |
| Front oxygen (A/F) sensor compensation coefficient         | Not in limit value        |
| Battery voltage                                            | $\geq 10.9$ V             |
| Engine coolant temperature                                 | $\geq 75$ °C (167 °F)     |
| Amount of intake air                                       | $< 10$ g/s (0.35 oz/s)    |
| Current continuation time of the rear oxygen sensor heater | $\geq 25000$ ms           |
| Fuel cut                                                   | Experienced               |

#### Used for normality judgement

| Secondary Parameters                               | Enable Conditions     |
|----------------------------------------------------|-----------------------|
| Secondary air system                               | Not in operation      |
| Closed loop control at the oxygen sensor           | In operation          |
| Misfire detection every 200 rotations              | < 7 time(s)           |
| Front oxygen (A/F) sensor compensation coefficient | Not in limit value    |
| Battery voltage                                    | $\geq 10.9$ V         |
| Engine coolant temperature                         | $\geq 75$ °C (167 °F) |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 4. GENERAL DRIVING CYCLE

After starting the engine, continuously perform the diagnosis with the same engine condition.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                 | Threshold Value | DTC            |
|--------------------------------------|-----------------|----------------|
| <b>High</b><br>Sensor output voltage | > 1.2 V         | P0138<br>P0158 |
| <b>Low</b><br>Sensor output voltage  | < 0.03 V        | P0137<br>P0157 |

#### Time Needed for Diagnosis:

High: 2500 ms

Low (1): 20000 ms

Low (2): 40000 ms

Low (3): Value from Map

#### Map

|                                    |       |       |       |
|------------------------------------|-------|-------|-------|
| Fuel Cut Time (Second)             | 0     | 2000  | 10000 |
| Time needed for diagnosis (second) | 40000 | 40000 | 60000 |

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                 | Threshold Value       | DTC            |
|--------------------------------------|-----------------------|----------------|
| <b>High</b><br>Sensor output voltage | $\leq 1.2 \text{ V}$  | P0138<br>P0158 |
| <b>Low</b><br>Sensor output voltage  | $\geq 0.03 \text{ V}$ | P0137<br>P0157 |

#### Time Needed for Diagnosis:

High: Less than 1 second

Low (1): Less than 1 second

Low (2): Less than 1 second

Low (3): Less than 1 second

## AN:DTC P0138 O2 SENSOR CIRCUIT HIGH VOLTAGE (BANK 1 SENSOR 2)

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

For the detection standard, refer to DTC P0137. <Ref. to GD(H6DO)-60, DTC P0137 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 1 SENSOR 2), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### AO:DTC P0139 O2 SENSOR CIRCUIT SLOW RESPONSE (BANK 1 SENSOR 2)

#### 1. OUTLINE OF DIAGNOSIS

Detect the slow response of the oxygen sensor.

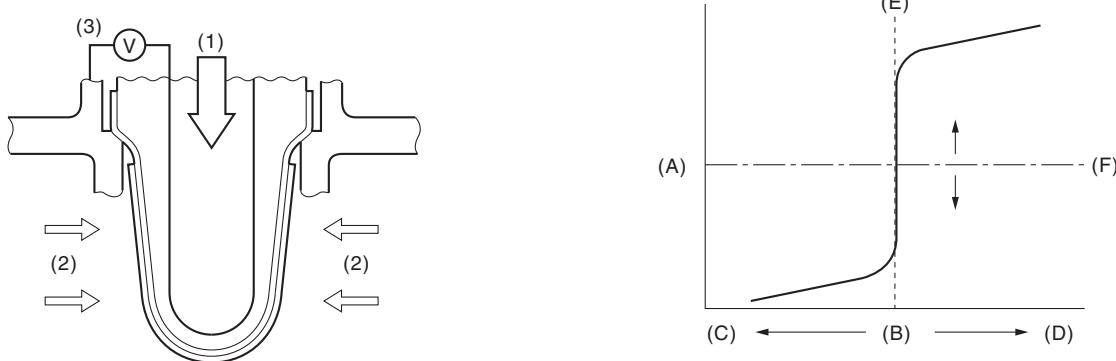
Judge as NG if either the rich to lean response diagnosis or lean to rich response diagnosis is NG, and Judge as OK if both are OK.

[Rich → lean diagnosis response]

1. Measure the response time for oxygen sensor output changes when the A/F ratio changes to rich to lean. If the measured response time is larger than the threshold value, it is NG. If it is smaller, it is OK.

2. Judge as NG when the oxygen sensor voltage is large (rich) when recovering from a deceleration fuel cut.

[Lean → rich diagnosis response]


1. Measure the response time for oxygen sensor output changes when the A/F ratio changes to lean to rich. If the measured response time is larger than the threshold value, it is NG.

2. Judge as NG when the oxygen sensor voltage remains small when recovering from a deceleration fuel cut.

#### Diagnostic method

Measure the response time of the output change of the oxygen sensor when the A/F ratio changes to rich to lean. And Judge as NG when the measured response time is larger than the threshold value.

#### 2. COMPONENT DESCRIPTION



EN-01696

|                         |                 |                                |
|-------------------------|-----------------|--------------------------------|
| (A) Electromotive force | (C) Rich        | (E) Theoretical air fuel ratio |
| (B) Air fuel ratio      | (D) Lean        | (F) Comparative voltage        |
| (1) Atmosphere          | (2) Exhaust gas | (3) Electromotive force        |

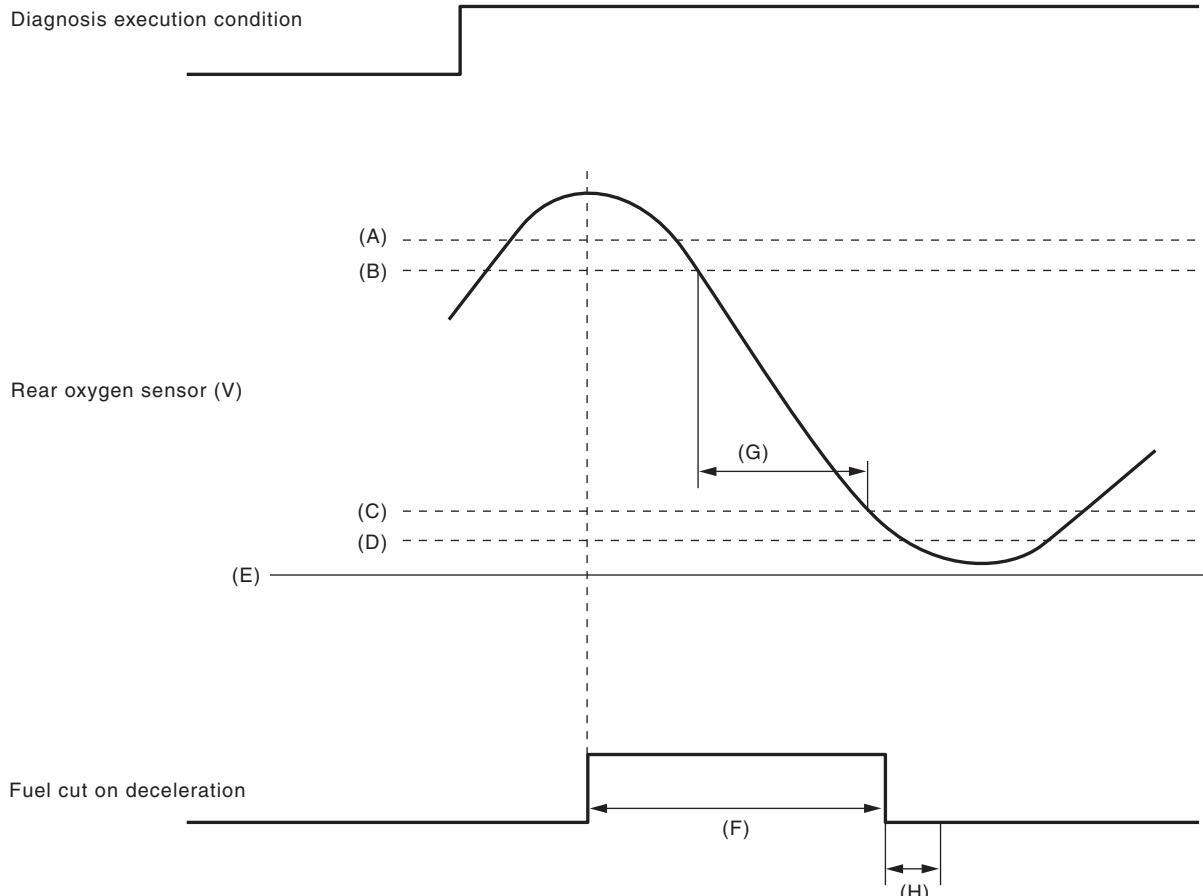
# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 3. ENABLE CONDITION

Rich → lean diagnosis response


| Secondary Parameters                                       | Enable Conditions      |
|------------------------------------------------------------|------------------------|
| Battery voltage                                            | $\geq 10.9$ V          |
| A/F main feedback control condition                        | Completed              |
| Deceleration fuel cut time is 5000 ms or more.             | Experienced            |
| After fuel cut                                             | $\geq 2000$ ms         |
| Current calculation time of the rear oxygen sensor heater  | $\geq 40000$ ms        |
| Current continuation time of the rear oxygen sensor heater | $\geq 20000$ ms        |
| Estimated catalyst temperature                             | $\geq 400$ °C (752 °F) |
| Number of deceleration fuel cut                            | $\geq 1$ time(s)       |

### 4. GENERAL DRIVING CYCLE

Perform the diagnosis only once when deceleration fuel cut occurs after rapid acceleration. (Pay attention to the oxygen sensor voltage for the timing of the deceleration.)

### 5. DIAGNOSTIC METHOD

When the oxygen sensor output voltage changes from 0.55 V (rich) to 0.15 V (lean), calculate the minimum response time for output change between 0.5 V and 0.2 V for the judgement criteria.



EN-05566

|            |                                |                                                                                                 |
|------------|--------------------------------|-------------------------------------------------------------------------------------------------|
| (A) 0.55 V | (E) 0 V                        | (H) Execute the malfunction judgement in 2000 ms from the recovery of fuel cut on deceleration. |
| (B) 0.5 V  | (F) More than 5000 ms          |                                                                                                 |
| (C) 0.2 V  | (G) Measure the response time. |                                                                                                 |
| (D) 0.15 V |                                |                                                                                                 |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### • Abnormality Judgement

1) Judge as NG when the judgement value is larger than the threshold value after deceleration fuel cut.  
Response time (diagnosis value) > threshold value → abnormal

NOTE:

Variation time of rear oxygen sensor output voltage is short during fuel cut in deceleration. NG judgement should be performed after deceleration fuel cut. Even without deceleration fuel cut, judge as OK if the value is below the threshold.

When the deceleration fuel cut time is 5000 ms or more, judge as NG if the following criteria are met 2000 ms after recovering from the deceleration fuel cut.

2) Judge as NG when the oxygen sensor voltage at recovery from a deceleration fuel cut, is large.  
If the fuel cut time in a deceleration fuel cut is long (5000 ms or more), and even after recovering from a deceleration fuel cut, the oxygen sensor voltage is high (0.55 V or more), judge as NG.

### Judgement Value

| Malfunction Criteria                                                                                                    | Threshold Value |
|-------------------------------------------------------------------------------------------------------------------------|-----------------|
| Shortest time change from rich (0.5 V O <sub>2</sub> output) to lean (0.2 V) when voltage reduces from 0.55 V to 0.15 V | > 491 ms        |
| or<br>Longest time over 0.55 V                                                                                          | ≥ 2000 ms       |

**Time Needed for Diagnosis:** 1 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

### • Normality Judgement

1) Regardless of a deceleration fuel cut, if the response time (diagnosis value) when the oxygen sensor voltage has changed from rich to lean is shorter than the threshold value (judgement value), judge as a normal condition.

Response time (diagnosis value) ≤ threshold value → normal

2) Do not judge as a normal condition.

Judge as OK and clear the NG if the following conditions are established.

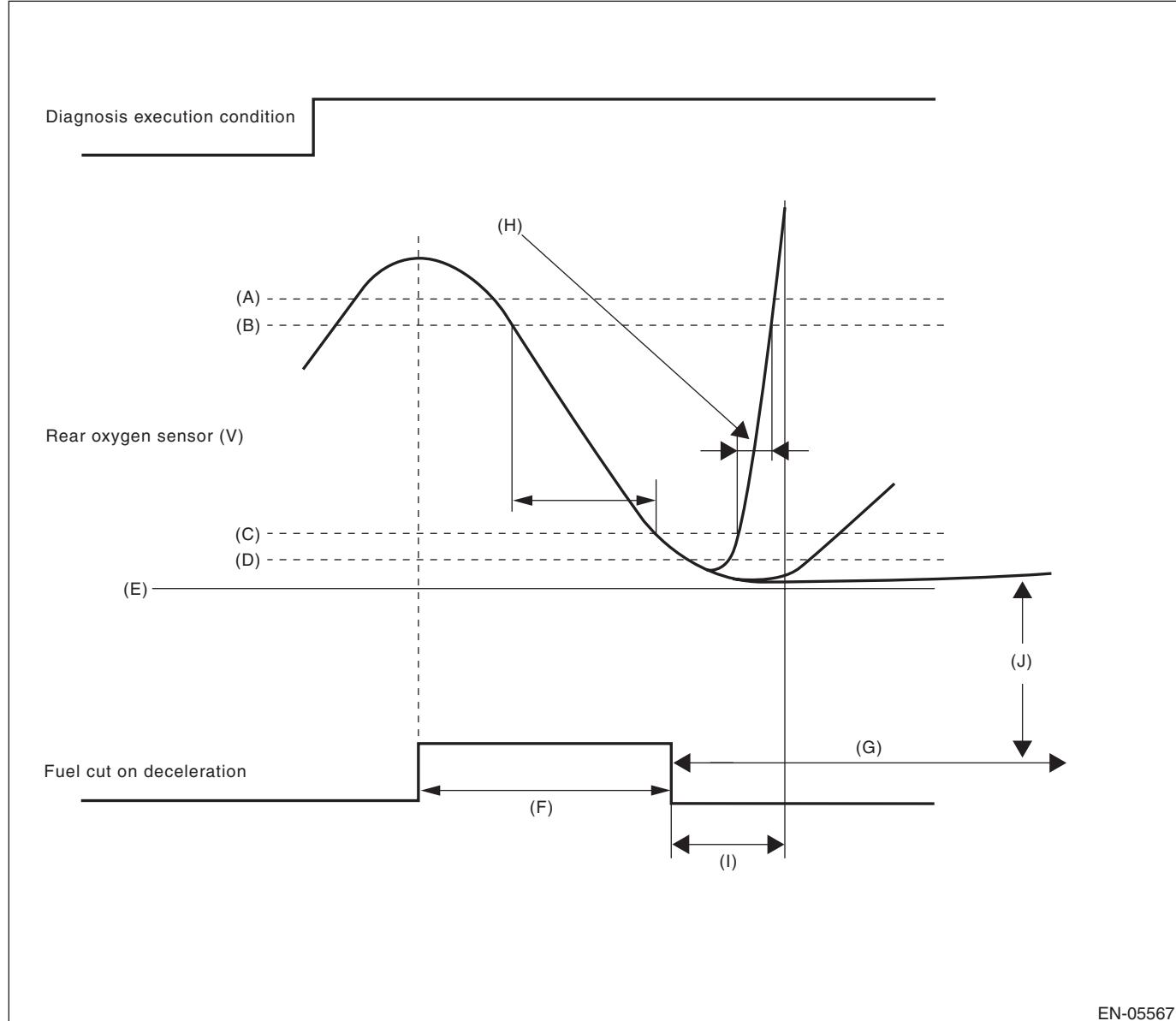
### Judgement Value

| Malfunction Criteria                                                                                                    | Threshold Value |
|-------------------------------------------------------------------------------------------------------------------------|-----------------|
| Shortest time change from rich (0.5 V O <sub>2</sub> output) to lean (0.2 V) when voltage reduces from 0.55 V to 0.15 V | ≤ 491 ms        |

**Time Needed for Diagnosis:** 1 time(s)

## 6. ENABLE CONDITION

Lean → rich response diagnosis


| Secondary Parameters                                       | Enable Conditions |
|------------------------------------------------------------|-------------------|
| Battery voltage                                            | ≥ 10.9 V          |
| A/F main feedback control condition                        | Completed         |
| Deceleration fuel cut time is 5000 ms or more.             | Experienced       |
| After fuel cut                                             | ≥ 2000 ms         |
| Current calculation time of the rear oxygen sensor heater  | ≥ 0 ms            |
| Current continuation time of the rear oxygen sensor heater | ≥ 0 ms            |
| Estimated catalyst temperature                             | ≥ 0 °C (32 °F)    |
| Number of deceleration fuel cut                            | ≥ 1 time(s)       |

### 7. GENERAL DRIVING CYCLE

Perform the diagnosis only once when deceleration fuel cut occurs after rapid acceleration. (Pay attention to the oxygen sensor voltage for the timing of the deceleration.)

### 8. DIAGNOSTIC METHOD

When the oxygen sensor output voltage changes from 0.25 V (lean) to 0.55 V (rich), calculate the minimum response time for output change between 0.3 V and 0.5 V for the judgement criteria.



EN-05567

- (A) 0.55 V
- (B) 0.5 V
- (C) 0.3 V
- (D) 0.25 V
- (E) 0 V
- (F) More than 5 seconds

- (G) More than 120000 ms
- (H) Measure the response time (diagnostic value).
- (I) Execute the malfunction judgement in 4000 ms from the recovery of fuel cut on deceleration.

- (J) Judge as NG when the voltage of rear oxygen sensor is 0.25 V or less for 120000 ms or more after recovery of fuel cut on deceleration.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### • Abnormality Judgement

- 1) Judge as NG when the judgement value is larger than the threshold value after deceleration fuel cut.  
Response time (diagnosis value) > threshold value → abnormal
- 2) If the oxygen sensor voltage is small after recovering from a deceleration fuel cut, and remains small, judge as NG.

### Judgement Value

| Malfunction Criteria                                                                                                    | Threshold Value |
|-------------------------------------------------------------------------------------------------------------------------|-----------------|
| Shortest time change from lean (0.3 V O <sub>2</sub> output) to rich (0.5 V) when voltage changes from 0.25 V to 0.55 V | > 4000 ms       |
| or                                                                                                                      |                 |
| Longest time under 0.25 V                                                                                               | ≥ 120000 ms     |

**Time Needed for Diagnosis:** 1 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

### • Normality Judgement

- 1) Regardless of a deceleration fuel cut, if the response time (diagnosis value) when the oxygen sensor voltage has changed from rich to lean is shorter than the threshold value (judgement value), judge as a normal condition.

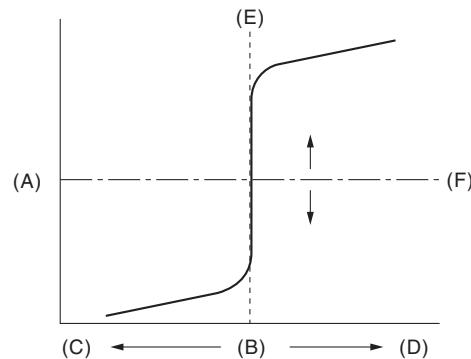
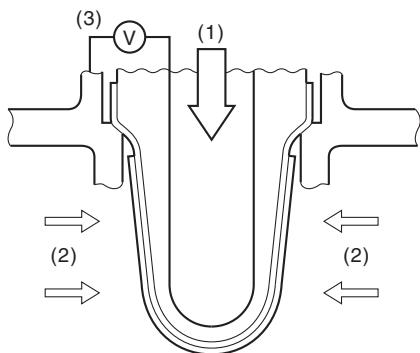
Response time (diagnosis value) ≤ threshold value → normal

- 2) Do not judge as a normal condition.

Judge as OK and clear the NG if the following conditions are established.

### Judgement Value

| Malfunction Criteria                                                                                                    | Threshold Value |
|-------------------------------------------------------------------------------------------------------------------------|-----------------|
| Shortest time change from lean (0.3 V O <sub>2</sub> output) to rich (0.5 V) when voltage changes from 0.25 V to 0.55 V | ≤ 4000 ms       |



**Time Needed for Diagnosis:** 1 time(s)

### AP:DTC P0140 O2 SENSOR CIRCUIT NO ACTIVITY DETECTED (BANK 1 SENSOR 2)

#### 1. OUTLINE OF DIAGNOSIS

Detect the rear oxygen sensor open or short circuit. Judge as NG when the rear oxygen sensor voltage can be determined to be abnormal considering conditions such as intake air amount, engine coolant temperature, main feedback control and deceleration fuel cut.

#### 2. COMPONENT DESCRIPTION



EN-01696

|                         |                 |                                |
|-------------------------|-----------------|--------------------------------|
| (A) Electromotive force | (C) Rich        | (E) Theoretical air fuel ratio |
| (B) Air fuel ratio      | (D) Lean        | (F) Comparative voltage        |
| (1) Atmosphere          | (2) Exhaust gas | (3) Electromotive force        |

#### 3. ENABLE CONDITION (USED ONLY FOR MALFUNCTION JUDGEMENT)

| Secondary Parameters                               | Enable Conditions                             |
|----------------------------------------------------|-----------------------------------------------|
| Closed loop control at the rear oxygen sensor      | In operation                                  |
| Target output voltage of rear oxygen sensor        | $\geq 0.55 \text{ V} + 0.05 \text{ V}$        |
| Amount of intake air                               | $\geq 10 \text{ g/s} (0.35 \text{ oz/s})$     |
| Engine coolant temperature                         | $\geq 75^\circ \text{C} (167^\circ \text{F})$ |
| Misfire detection every 200 rotations              | < 7 time(s)                                   |
| Front oxygen (A/F) sensor compensation coefficient | Not in limit value                            |
| Battery voltage                                    | $\geq 10.9 \text{ V}$                         |
| Deceleration fuel cut of 5000 ms or more.          | Experienced                                   |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis once after starting the engine.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                   | Threshold Value          |
|--------------------------------------------------------|--------------------------|
| Minimum output voltage<br>or<br>Maximum output voltage | > 0.15 V<br><br>< 0.55 V |

**Time Needed for Diagnosis:** 200000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the following conditions are established.

#### Judgement Value

| Malfunction Criteria                                 | Threshold Value |
|------------------------------------------------------|-----------------|
| Diagnosis of the rear oxygen sensor voltage low side | Incomplete      |
| Minimum output voltage                               | $\leq 0.15$ V   |
| Maximum output voltage                               | $\geq 0.55$ V   |

**Time Needed for Diagnosis:** Less than 1 second

### **AQ:DTC P0151 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0131. <Ref. to GD(H6DO)-51, DTC P0131 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **AR:DTC P0152 O2 SENSOR CIRCUIT HIGH VOLTAGE (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0132. <Ref. to GD(H6DO)-53, DTC P0132 O2 SENSOR CIRCUIT HIGH VOLTAGE (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **AS:DTC P0153 O2 SENSOR CIRCUIT SLOW RESPONSE (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0133. <Ref. to GD(H6DO)-55, DTC P0133 O2 SENSOR CIRCUIT SLOW RESPONSE (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **AT:DTC P0154 O2 SENSOR CIRCUIT NO ACTIVITY DETECTED (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0134. <Ref. to GD(H6DO)-58, DTC P0134 O2 SENSOR CIRCUIT NO ACTIVITY DETECTED (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **AU:DTC P0157 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 2 SENSOR 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0137. <Ref. to GD(H6DO)-60, DTC P0137 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 1 SENSOR 2), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **AV:DTC P0158 O2 SENSOR CIRCUIT HIGH VOLTAGE (BANK 2 SENSOR 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0137. <Ref. to GD(H6DO)-60, DTC P0137 O2 SENSOR CIRCUIT LOW VOLTAGE (BANK 1 SENSOR 2), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **AW:DTC P0159 O2 SENSOR CIRCUIT SLOW RESPONSE (BANK 2 SENSOR 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0139. <Ref. to GD(H6DO)-63, DTC P0139 O2 SENSOR CIRCUIT SLOW RESPONSE (BANK 1 SENSOR 2), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **AX:DTC P0160 O2 SENSOR CIRCUIT NO ACTIVITY DETECTED (BANK 2 SENSOR 2)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0140. <Ref. to GD(H6DO)-69, DTC P0140 O2 SENSOR CIRCUIT NO ACTIVITY DETECTED (BANK 1 SENSOR 2), Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### AY:DTC P0171 SYSTEM TOO LEAN (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect fuel system malfunction by the amount of main feedback control.

#### Diagnostic method

Fuel system is diagnosed by comparing the target air fuel ratio calculated by ECM with the actual air fuel ratio measured by sensor.

#### 2. ENABLE CONDITION

| Secondary Parameters       | Enable Conditions                                   |
|----------------------------|-----------------------------------------------------|
| A/F main learning system   | In operation                                        |
| Engine coolant temperature | $\geq 75^{\circ}\text{C}$ ( $167^{\circ}\text{F}$ ) |
| Engine load change         | $< 0.02 \text{ g/rev}$ (0 oz/rev)                   |
| Engine load                | $\geq$ Value of Map 1                               |

#### Map1

|                             |        |              |             |             |              |              |              |              |              |              |              |
|-----------------------------|--------|--------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Engine speed (rpm)          | Idling | 700          | 1000        | 1500        | 2000         | 2500         | 3000         | 3500         | 4000         | 4500         | 5000         |
| Measured value (g (oz)/rev) | na     | 0.357 (0.01) | 0.25 (0.01) | 0.25 (0.01) | 0.317 (0.01) | 0.326 (0.01) | 0.337 (0.01) | 0.397 (0.01) | 0.439 (0.01) | 0.454 (0.02) | 0.454 (0.02) |

#### 3. GENERAL DRIVING CYCLE

Perform the diagnosis continuously at idling or at a constant speed after warming up the engine.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

Compare the diagnosed value (fsobd) with the threshold value, and if a condition meeting the malfunction criteria below continues for  $10 \text{ s} \times 5$  time(s) or more, judge that there is a fault in the fuel system.

##### Judgement Value

| Malfunction Criteria                                                                                                                                                                                                                                                            | Threshold Value       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| $\text{fsobd} = (\text{sglmd} - \text{tglmida}) + \text{faf} + \text{flaf}$<br>In this case: sglmd = measured lambda<br>tglmida = target lambda<br>faf = main feedback compensation coefficient every 64 milliseconds<br>flaf = main feedback learning compensation coefficient | $\geq$ Value of Map 2 |

#### Map2

|                          |       |            |            |            |             |           |             |
|--------------------------|-------|------------|------------|------------|-------------|-----------|-------------|
| Amount of air (g (oz)/s) | 0 (0) | 3.2 (0.11) | 6.4 (0.23) | 9.6 (0.34) | 12.8 (0.45) | 16 (0.56) | 19.2 (0.68) |
| fsobdL1 (%)              | 1.4   | 1.4        | 1.332      | 1.265      | 1.265       | 1.265     | 1.265       |

**Time Needed for Diagnosis:**  $10 \text{ s} \times 5$  time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria                                                        | Threshold Value |
|-----------------------------------------------------------------------------|-----------------|
| $\text{fsobd} = (\text{sglmd} - \text{tglmida}) + \text{faf} + \text{flaf}$ | $< 1.2$         |

**Time Needed for Diagnosis:** 10 s

### AZ:DTC P0172 SYSTEM TOO RICH (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect fuel system malfunction by the amount of main feedback control.

#### Diagnostic method

Fuel system is diagnosed by comparing the target air fuel ratio calculated by ECM with the actual air fuel ratio measured by sensor.

#### 2. ENABLE CONDITION

| Secondary Parameters                                 | Enable Conditions                                   |
|------------------------------------------------------|-----------------------------------------------------|
| A/F main learning system                             | In operation                                        |
| Engine coolant temperature                           | $\geq 75^{\circ}\text{C}$ ( $167^{\circ}\text{F}$ ) |
| Engine load change                                   | $\leq 0.02 \text{ g/rev}$ ( $0 \text{ oz/rev}$ )    |
| Learning value of EVAP conc.                         | $< 0.1$                                             |
| Cumulative time of canister purge after engine start | $\geq 20 \text{ s}$                                 |
| Continuous period after canister purge starting      | $\geq 29884 \text{ ms}$                             |
| Engine load                                          | $\geq \text{Value of Map 1}$                        |

#### Map1

| Engine speed (rpm)             | idling | 700             | 1000           | 1500           | 2000            | 2500            | 3000            | 3500            | 4000            | 4500            | 5000            |
|--------------------------------|--------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Measured value<br>(g (oz)/rev) | na     | 0.357<br>(0.01) | 0.25<br>(0.01) | 0.25<br>(0.01) | 0.317<br>(0.01) | 0.326<br>(0.01) | 0.337<br>(0.01) | 0.397<br>(0.01) | 0.439<br>(0.02) | 0.454<br>(0.02) | 0.454<br>(0.02) |

#### 3. GENERAL DRIVING CYCLE

Perform the diagnosis continuously at idling or at a constant speed after warming up the engine.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 4. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Compare the diagnosed value (fsobd) with the threshold value, and if a condition meeting the malfunction criteria below continues for  $10\text{ s} \times 5$  time(s) or more, judge that there is a fault in the fuel system.

#### Judgement Value

| Malfunction Criteria                                                                                                                                                                                                                       | Threshold Value  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| $fsobd = (sglmd - tglmda) + fab + flaf$<br>In this case: sglmd = measured lambda<br>tglmda = target lambda<br>fab = main feedback compensation coefficient every 64 milliseconds<br>flaf = main feedback learning compensation coefficient | < Value of Map 2 |

#### Map2

|                          |       |            |            |            |             |           |             |
|--------------------------|-------|------------|------------|------------|-------------|-----------|-------------|
| Amount of air (g (oz)/s) | 0 (0) | 3.2 (0.11) | 6.4 (0.23) | 9.6 (0.34) | 12.8 (0.45) | 16 (0.56) | 19.2 (0.68) |
| fsobdL1 (%)              | 0.6   | 0.6        | 0.688      | 0.715      | 0.725       | 0.735     | 0.735       |

**Time Needed for Diagnosis:**  $10\text{ s} \times 5$  time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK when the malfunction criteria below continues for 10 seconds.

#### Judgement Value

| Malfunction Criteria                    | Threshold Value |
|-----------------------------------------|-----------------|
| $fsobd = (sglmd - tglmda) + fab + flaf$ | $\geq 0.8$      |

**Time Needed for Diagnosis:** 10 s

## BA:DTC P0174 SYSTEM TOO LEAN (BANK 2)

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

For the detection standard, refer to DTC P0171. <Ref. to GD(H6DO)-72, DTC P0171 SYSTEM TOO LEAN (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

## BB:DTC P0175 SYSTEM TOO RICH (BANK 2)

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

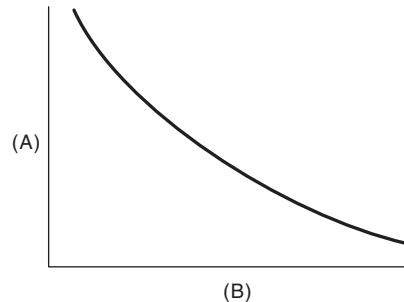
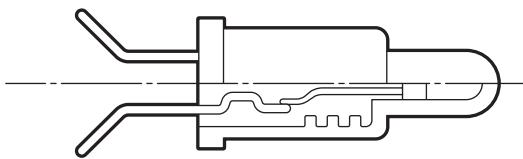
For the detection standard, refer to DTC P0172. <Ref. to GD(H6DO)-73, DTC P0172 SYSTEM TOO RICH (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### BC:DTC P0181 FUEL TEMPERATURE SENSOR “A” CIRCUIT RANGE/ PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Detect faults in the fuel temperature sensor output properties.

Diagnosis is performed in two methods (drift diagnosis and stuck diagnosis). If either is NG, judge as NG. If both are OK, Judge as OK and clear the NG.



##### Drift Diagnosis

Normally fuel temperature is lower than engine coolant temperature. When the fuel temperature becomes higher than the engine coolant temperature, the range is considered to be shifted, and judged as NG.

##### Stuck Diagnosis

As the engine warms up (cumulative amount of intake air after starting is large), if the fuel temperature which should rise does not, determine as being stuck and NG.

#### 2. COMPONENT DESCRIPTION



EN-01700

(A) Resistance value ( $\Omega$ )

(B) Fuel temperature  $^{\circ}\text{C}$  ( $^{\circ}\text{F}$ )

#### 3. ENABLE CONDITION

##### Drift Diagnosis

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                                    | Threshold Value                                  |
|-------------------------------------------------------------------------|--------------------------------------------------|
| Fuel level                                                              | $\geq 9.6 \text{ l}$ (2.54 US gal, 2.11 Imp gal) |
| Elapsed time after starting the engine                                  | $\geq 20 \text{ s}$                              |
| Engine coolant temperature – Engine coolant temperature at engine start | $> 10 \text{ }^{\circ}\text{C}$ (50 °F)          |
| Fuel temperature – Engine coolant temperature                           | $\geq 10 \text{ }^{\circ}\text{C}$ (50 °F)       |
| Battery voltage                                                         | $\geq 10.9 \text{ V}$                            |

**Time Needed for Diagnosis:** 120 s

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                                                    | Threshold Value                                  |
|-------------------------------------------------------------------------|--------------------------------------------------|
| Fuel level                                                              | $\geq 9.6 \text{ l}$ (2.54 US gal, 2.11 Imp gal) |
| Elapsed time after starting the engine                                  | $\geq 20 \text{ s}$                              |
| Engine coolant temperature – Engine coolant temperature at engine start | $> 10 \text{ }^{\circ}\text{C}$ (50 °F)          |
| Fuel temperature – Engine coolant temperature                           | $< 10 \text{ }^{\circ}\text{C}$ (50 °F)          |
| Battery voltage                                                         | $\geq 10.9 \text{ V}$                            |
| Engine coolant temperature                                              | $< 75 \text{ }^{\circ}\text{C}$ (167 °F)         |

**Time Needed for Diagnosis:** Less than 1 second

### 6. ENABLE CONDITION

#### Stuck Diagnosis

| Secondary Parameters                   | Enable Conditions       |
|----------------------------------------|-------------------------|
| Elapsed time after starting the engine | $\geq 20000 \text{ ms}$ |
| Battery voltage                        | $\geq 10.9 \text{ V}$   |

### 7. GENERAL DRIVING CYCLE

Always perform diagnosis after 20 seconds have passed since the engine started.

### 8. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

##### Judgement Value

| Malfunction Criteria                              | Threshold Value               |
|---------------------------------------------------|-------------------------------|
| Accumulated amount of intake air                  | $\geq 551043$ g (19435.29 oz) |
| Fuel temperature difference between Max. and Min. | $< 2$ °C (35.6 °F)            |

**Time Needed for Diagnosis:** Less than 1 second

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

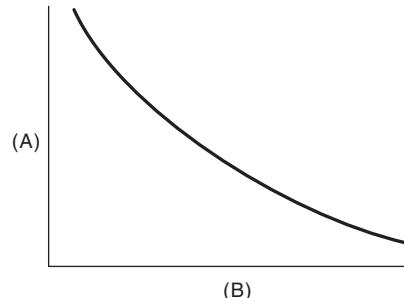
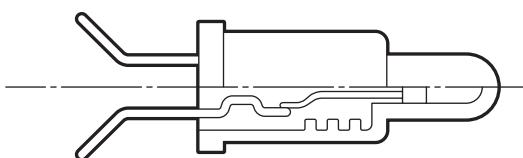
Judge as OK and clear the NG if the following conditions are established.

##### Judgement Value

| Malfunction Criteria                              | Threshold Value       |
|---------------------------------------------------|-----------------------|
| Fuel temperature difference between Max. and Min. | $\geq 2$ °C (35.6 °F) |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria



## GENERAL DESCRIPTION

### BD:DTC P0182 FUEL TEMPERATURE SENSOR “A” CIRCUIT LOW INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of fuel temperature sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01700

(A) Resistance value ( $\Omega$ )

(B) Fuel temperature  $^{\circ}\text{C}$  ( $^{\circ}\text{F}$ )

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value       |
|----------------------|-----------------------|
| Output voltage       | $< 0.344 \text{ V}$   |
| Battery voltage      | $\geq 10.9 \text{ V}$ |

**Time Needed for Diagnosis:** 2500 ms

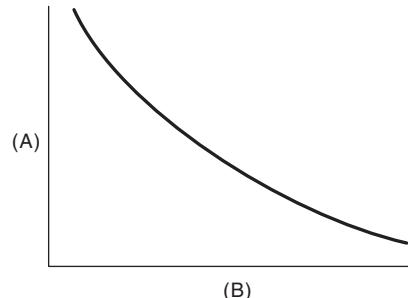
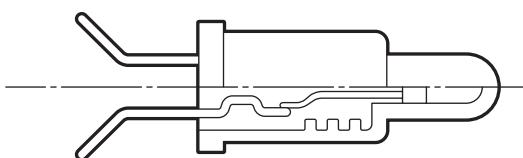
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value        |
|----------------------|------------------------|
| Output voltage       | $\geq 0.344 \text{ V}$ |
| Battery voltage      | $\geq 10.9 \text{ V}$  |



**Time Needed for Diagnosis:** Less than 1 second

### BE:DTC P0183 FUEL TEMPERATURE SENSOR “A” CIRCUIT HIGH INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of fuel temperature sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01700

(A) Resistance value ( $\Omega$ )

(B) Fuel temperature  $^{\circ}\text{C}$  ( $^{\circ}\text{F}$ )

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value        |
|----------------------|------------------------|
| Output voltage       | $\geq 4.881 \text{ V}$ |
| Battery voltage      | $\geq 10.9 \text{ V}$  |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value       |
|----------------------|-----------------------|
| Output voltage       | $< 4.881 \text{ V}$   |
| Battery voltage      | $\geq 10.9 \text{ V}$ |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### BF:DTC P0196 ENGINE OIL TEMPERATURE SENSOR CIRCUIT RANGE/ PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Detect for abnormal values in the oil temperature sensor output properties.

Judge as NG when the oil temperature does not rise even though the engine is running under a condition where it should rise.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions     |
|----------------------|-----------------------|
| Battery voltage      | $\geq 10.9$ V         |
| Engine speed         | $\geq$ Value from Map |

#### Map

|                                       |              |              |             |             |           |            |            |            |
|---------------------------------------|--------------|--------------|-------------|-------------|-----------|------------|------------|------------|
| Engine coolant temperature<br>°C (°F) | -40<br>(-40) | -30<br>(-22) | -20<br>(-4) | -10<br>(14) | 0<br>(32) | 10<br>(50) | 20<br>(68) | 30<br>(86) |
| Engine speed<br>rpm                   | 500          | 500          | 500         | 500         | 500       | 500        | 500        | 500        |

|                                       |             |             |             |             |             |             |              |              |
|---------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|
| Engine coolant temperature<br>°C (°F) | 40<br>(104) | 50<br>(122) | 60<br>(140) | 70<br>(158) | 80<br>(176) | 90<br>(194) | 100<br>(212) | 110<br>(230) |
| Engine speed<br>rpm                   | 500         | 500         | 500         | 500         | 500         | 500         | 500          | 500          |

#### 3. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after starting the engine.

### 4. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

#### Judgement Value

| Malfunction Criteria                                                      | Threshold Value                                                                                |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Engine oil temperature                                                    | < 15 °C (59 °F)                                                                                |
| After engine start oil temperature sensor characteristic diagnosis timer. | ≥ Judgement value for after engine start oil temperature sensor characteristic diagnosis timer |

After engine start oil temperature sensor characteristic diagnosis timer (timer for diagnosis).

- Timer stop at fuel cut
- During the driving conditions except a) above, timer counts up as follows.  
64 milliseconds + TOILCNT milliseconds (at the time of 64 milliseconds).

Where, TOILCNT is determined as follows,

TOILCNT = 0 at idle switch ON

For TOILCNT at Idle switch off, refer to the following table.

|                     |           | Vehicle speed km/h (MPH) |        |          |           |           |           |           |           |
|---------------------|-----------|--------------------------|--------|----------|-----------|-----------|-----------|-----------|-----------|
|                     |           | 0 (0)                    | 8 (5)  | 16 (9.9) | 24 (14.9) | 32 (19.9) | 40 (24.9) | 48 (29.8) | 56 (34.8) |
| Temperature °C (°F) | -40 (-40) | 0 ms                     | 32 ms  | 76 ms    | 130 ms    | 149 ms    | 171 ms    | 176 ms    | 181 ms    |
|                     | -30 (-22) | 67 ms                    | 93 ms  | 121 ms   | 157 ms    | 170 ms    | 184 ms    | 193 ms    | 203 ms    |
|                     | -20 (-4)  | 98 ms                    | 123 ms | 148 ms   | 184 ms    | 193 ms    | 204 ms    | 214 ms    | 226 ms    |
|                     | -10 (14)  | 145 ms                   | 166 ms | 187 ms   | 208 ms    | 223 ms    | 239 ms    | 242 ms    | 245 ms    |
|                     | 0 (32)    | 161 ms                   | 187 ms | 212 ms   | 243 ms    | 252 ms    | 262 ms    | 266 ms    | 270 ms    |

After engine start oil temperature characteristic diagnosis timer judgement value (t).

$$t = 2400000 \text{ ms} - 60000 \text{ ms} \times Ti \quad (t \geq 2400000)$$

Ti = The lowest coolant temperature after starting the engine.

**Time Needed for Diagnosis:** Less than 1 second

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the following conditions are established.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Engine oil temperature | ≥ 15 °C (59 °F) |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### BG:DTC P0197 ENGINE OIL TEMPERATURE SENSOR LOW

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the oil temperature sensor.  
Judge as NG when outside of the judgement value.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | < 0.188 V       |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 0.188$ V  |

**Time Needed for Diagnosis:** Less than 1 second

### BH:DTC P0198 ENGINE OIL TEMPERATURE SENSOR HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the oil temperature sensor.  
Judge as NG when outside of the judgement value.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 4.694$ V  |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $< 4.694$ V     |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### BI: DTC P0222 THROTTLE/PEDAL POSITION SENSOR/SWITCH “B” CIRCUIT LOW

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of throttle position sensor 2.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01859

(1) Throttle position sensor 1 signal  
(2) Throttle position sensor 2 signal

(3) Throttle position sensor

(4) Engine control module (ECM)

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | $\leq 0.926$ V  |

**Time Needed for Diagnosis:** 24 ms

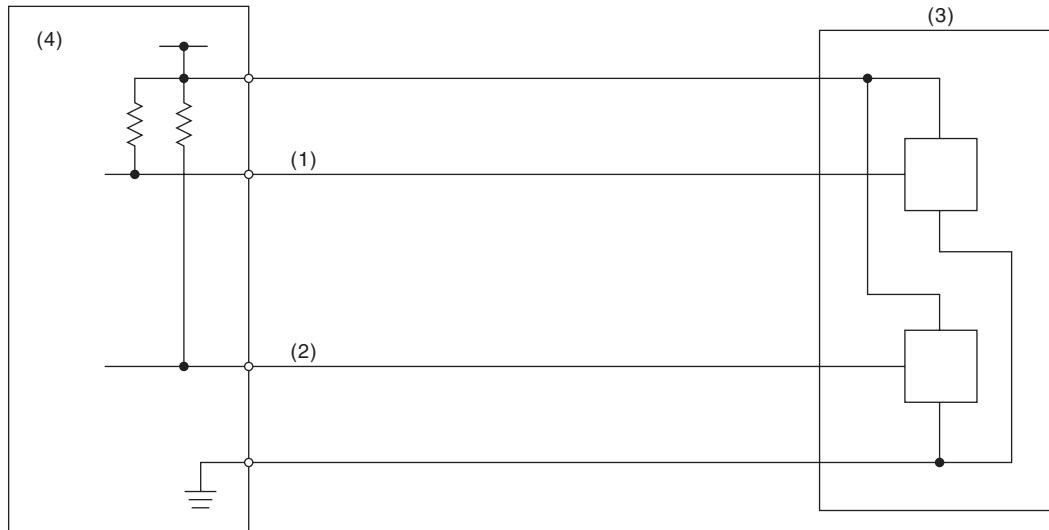
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | $> 0.926$ V     |


**Time Needed for Diagnosis:** 24 ms

### BJ:DTC P0223 THROTTLE/PEDAL POSITION SENSOR/SWITCH “B” CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of throttle position sensor 2.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01859

(1) Throttle position sensor 1 signal  
(2) Throttle position sensor 2 signal

(3) Throttle position sensor

(4) Engine control module (ECM)

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | $\geq 4.858$ V  |

**Time Needed for Diagnosis:** 24 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

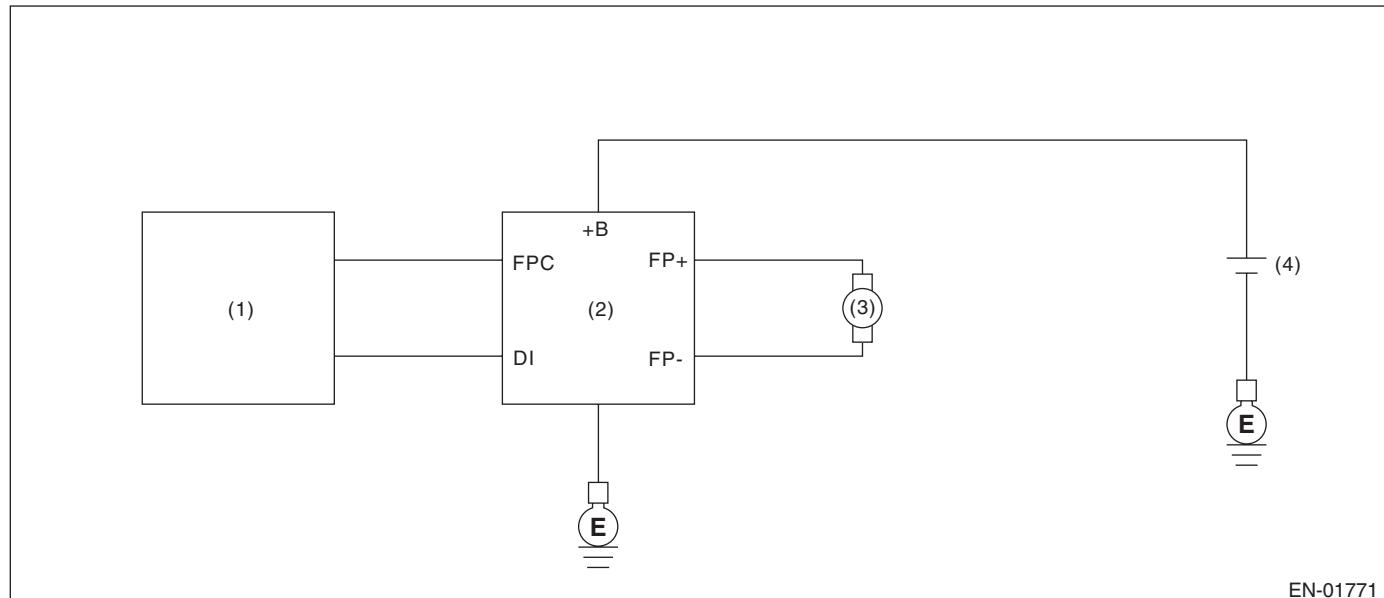
##### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | $< 4.858$ V     |

**Time Needed for Diagnosis:** 24 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION


### BK:DTC P0230 FUEL PUMP PRIMARY CIRCUIT

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of fuel pump control unit.

Judge as NG when the NG signal is sent through a diagnostic line coming from the fuel pump control unit. Fuel pump control unit detects the open or short circuit malfunction for each line, and then sends NG signals if one of them is found NG.

#### 2. COMPONENT DESCRIPTION



(1) Engine control module (ECM)

(3) Fuel pump

(4) Battery

(2) Fuel pump control unit

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                           | Threshold Value                     |
|------------------------------------------------|-------------------------------------|
| Battery voltage                                | ≥ 8 V                               |
| Elapsed time after starting the engine         | ≥ 180000 ms                         |
| Fuel pump control                              | ON                                  |
| Fuel pump control unit output diagnosis signal | Low                                 |
| Fuel level                                     | ≥ 9.6 ℥ (2.54 US gal, 2.11 Imp gal) |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                           | Threshold Value                     |
|------------------------------------------------|-------------------------------------|
| Battery voltage                                | ≥ 8 V                               |
| Elapsed time after starting the engine         | ≥ 180000 ms                         |
| Fuel pump control                              | ON                                  |
| Fuel pump control unit output diagnosis signal | High                                |
| Fuel level                                     | ≥ 9.6 ℥ (2.54 US gal, 2.11 Imp gal) |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### BL:DTC P0301 CYLINDER 1 MISFIRE DETECTED

#### 1. OUTLINE OF DIAGNOSIS

Detect the presence of misfire occurrence. (Revolution fluctuation method)

Monitoring Misfire which influences exhaust deterioration (1.5 times of FTP) and catalyst damage is made obligatory by the law. Misfire affecting these two has two patterns below. :

- Intermittent misfire (The same cylinder misfires in random, or different cylinders misfire in random.): FTP 1.5 times misfire
- Every time misfire (The same cylinder misfires every time.): FTP 1.5 times misfire, Catalyst damage misfire

The following detecting methods are adopted for these detection.

1) Intermittent misfire: FTP 1.5 times misfire

- 120° Interval Difference Method
- 360° Interval Difference Method (whole range)
- 720° Interval Difference Method (3,000 rpm or more)

2) Misfire every time: FTP 1.5 times misfire, Catalyst damage misfire

- 360° Interval Difference Method

#### 2. ENABLE CONDITION

| Secondary Parameters                            | Enable Conditions                        |
|-------------------------------------------------|------------------------------------------|
| All secondary parameters enable conditions      | $\geq 1024$ ms                           |
| Intake manifold pressure change at 120°CA       | $<$ Value of Map 1                       |
| Throttle position change during 16 milliseconds | $< 20$ °                                 |
| Fuel shut-off function                          | Not in operation                         |
| Fuel level                                      | $\geq 9.6$ l (2.54 US gal, 2.11 Imp gal) |
| Vehicle dynamic control or AT torque control    | Not in operation                         |
| Evaporative system leak check                   | Not in operation                         |
| Engine speed                                    | 400 rpm — 6500 rpm                       |
| Intake manifold pressure                        | $\geq$ Value of Map 2                    |
| Battery voltage                                 | $\geq 8$ V                               |
| Fuel parameter determination                    | Not extremely low volatility             |
| Elapsed time after starting the engine          | $\geq 0$ ms                              |
| Engine speed change during 32 milliseconds      | $< 500$ rpm                              |

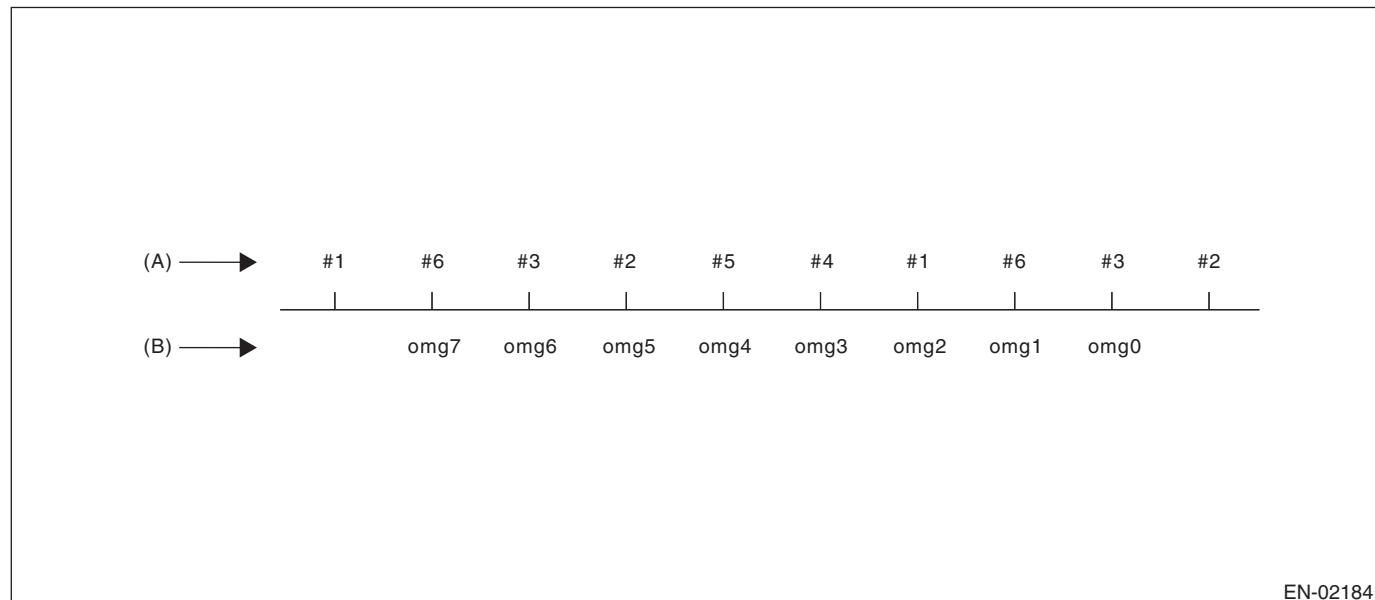
#### Map 1

| rpm                    | 700                 | 1000                | 1500                | 2000                | 2500                | 3000                | 3500                | 4000                | 4500                | 5000                | 5500                | 6000                | 6500                | 7000                |
|------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| kPa<br>(mmHg,<br>inHg) | 20<br>(150,<br>5.9) |

#### Map 2

| rpm                    | 700                     | 1000                    | 1500                    | 2000                    | 2500                  | 3000                    | 3500                    | 4000                    | 4500                    | 5000                    | 5500                 | 6000                     | 6500                     | 7000                     |
|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------|--------------------------|--------------------------|--------------------------|
| kPa<br>(mmHg,<br>inHg) | 27.3<br>(205.0,<br>8.1) | 25.3<br>(190.0,<br>7.5) | 25.3<br>(190.0,<br>7.5) | 25.3<br>(190.0,<br>7.5) | 24<br>(180.0,<br>7.1) | 25.3<br>(190.0,<br>7.5) | 29.9<br>(224.0,<br>8.8) | 29.7<br>(223.0,<br>8.8) | 30.9<br>(232.0,<br>9.1) | 31.5<br>(236.0,<br>9.3) | 34<br>(255.0,<br>10) | 37.9<br>(284.0,<br>11.2) | 42.7<br>(320.0,<br>12.6) | 42.7<br>(320.0,<br>12.6) |

### 3. GENERAL DRIVING CYCLE


- If conditions are met, it is possible to detect the misfires from idling to high engine speed. However, to avoid excessive load or harm to the engine, perform diagnosis at idle.
- Perform the diagnosis continuously.

### 4. DIAGNOSTIC METHOD

When a misfire occurs, the engine speed will decrease and the crankshaft position speed will change. Calculate the interval difference value (diagnostic value) from crankshaft position speed by the following formula, and judge whether a misfire is occurring or not comparing the calculated result with judgement value. Counting the number of misfires. If the misfire ratio is higher during 1000 revs. or 200 revs., Judge corresponding cylinders as NG.

|                                                                |                                                                                                                                                                       |                                                                                                                                     |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Diagnostic value calculation<br>(Calculate from angle speed) → | Misfire detection every single ignition<br>(Compare diagnostic value with judgement value) →                                                                          | NG judgement (Misfire occurrence judgement required by the law) (Compare number of misfire with judgement)                          |
|                                                                | <ul style="list-style-type: none"><li>• 120° Interval Difference Method</li><li>• 360° Interval Difference Method</li><li>• 720° Interval Difference Method</li></ul> | <ul style="list-style-type: none"><li>• FTP 1.5 times misfire NG judgement</li><li>• Catalyst damage misfire NG judgement</li></ul> |

As shown in the following figure, pick a cylinder as the standard and name it omg 0. And the former crankshaft position speed is named omg 1, the second former crankshaft position speed is named omg 2, the third is named omg 3, etc.



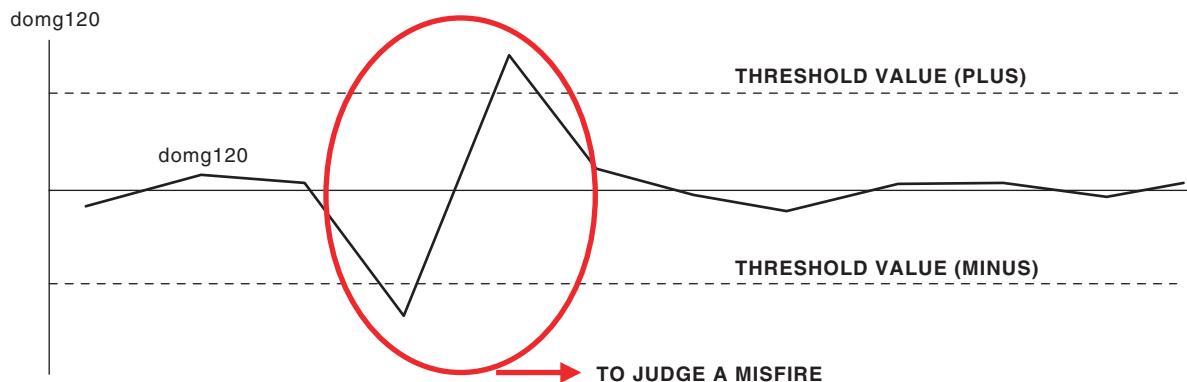
EN-02184

(A) Ignition order

(B) Crankshaft position speed

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

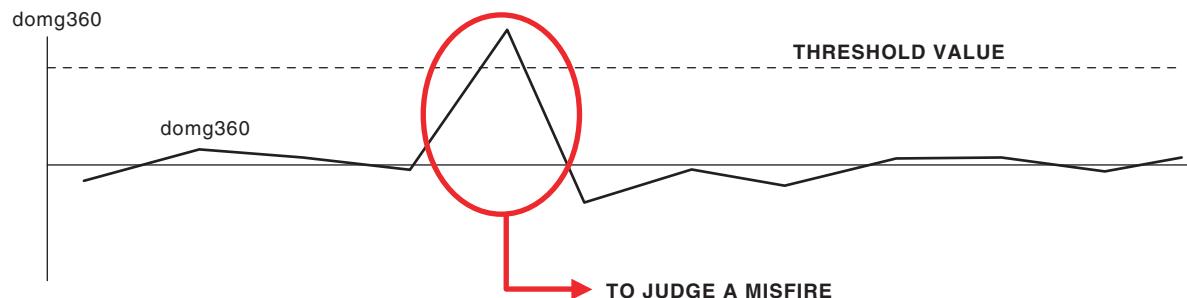

### 120° Interval Difference Method

Diagnostic value  $domg\ 120 = (omg\ 1 - omg\ 0) - (omg\ 7 - omg\ 1)/6$

Judge as a misfire in the following cases.

- $domg\ 120 > \text{judgement value of positive side}$
- $domg\ 121 \leq \text{judgement value of negative side}$

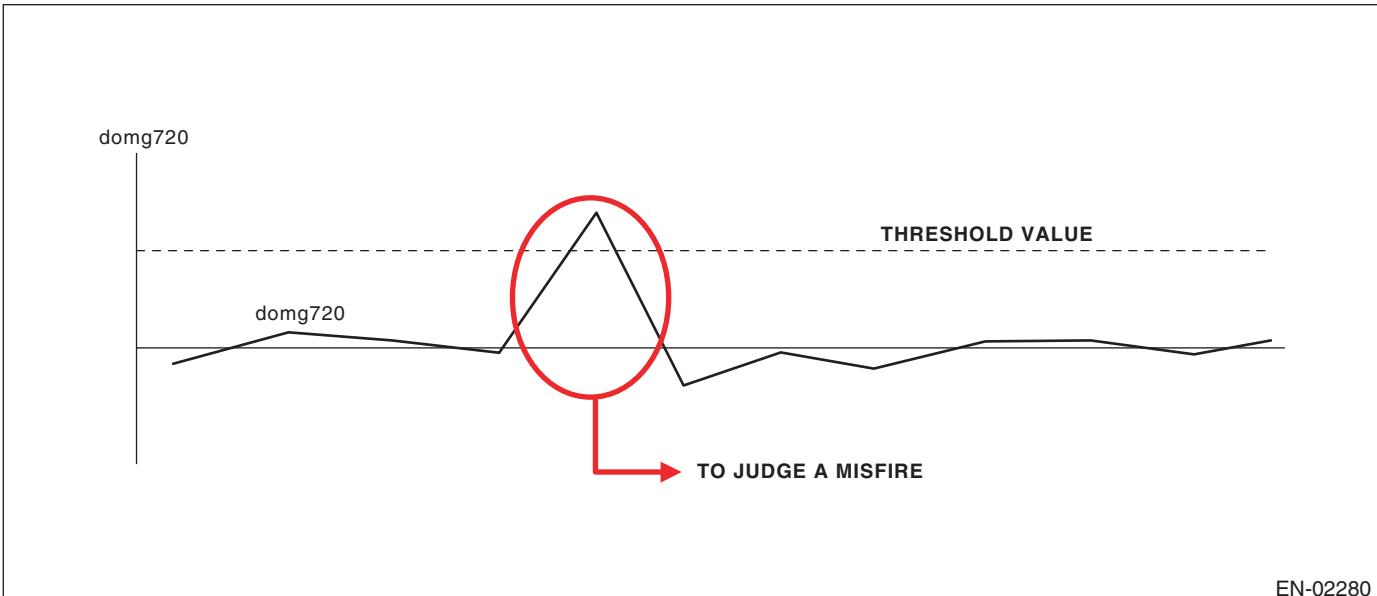
(Judgement value before 120° CA)




EN-02185

### 360° Interval Difference Method

Diagnostic value  $domg\ 360 = (omg\ 1 - omg\ 0) - (omg\ 4 - omg\ 3)$


Misfire judgement  $domg\ 360 > \text{Judgement value} \rightarrow \text{Judge as misfire}$



EN-02279

### 720° Interval Difference Method

|                   |                                                               |
|-------------------|---------------------------------------------------------------|
| Diagnostic value  | $domg\ 720 = (omg\ 1 - omg\ 0) - (omg\ 7 - omg\ 6)$           |
| Misfire judgement | $domg\ 720 > Judgement\ value \rightarrow Judge\ as\ misfire$ |



- **FTP 1.5 times misfire (Misfire occurrence level which influences exhaust gas)**

- **Abnormality Judgement**

**Judgement Value (Judge that malfunction occurs when the misfire ratio is high in 1000 engine revs.)**

| Malfunction Criteria         | Threshold Value                                            |
|------------------------------|------------------------------------------------------------|
| FTP emission judgement value | $\geq 50 \times 100/3000\% \text{ in } 1000 \text{ revs.}$ |

**Time Needed for Diagnosis:** 1000 engine revs.

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

- **Normality Judgement**

**Judgement Value**

| Malfunction Criteria         | Threshold Value                                         |
|------------------------------|---------------------------------------------------------|
| FTP emission judgement value | $< 50 \times 100/3000\% \text{ in } 1000 \text{ revs.}$ |

**Time Needed for Diagnosis:** 1000 engine revs.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

- Catalyst damage misfire (Misfire occurrence level damaging catalyst)
- Abnormality Judgement

### Judgement Value

| Malfunction Criteria                    | Threshold Value       |
|-----------------------------------------|-----------------------|
| Catalyst damage misfire judgement value | $\geq$ Value of Map 3 |

### Map 3

|                    |      | Intake air (g(oz)/rev) |            |            |            |          |            |            |            |            |          |
|--------------------|------|------------------------|------------|------------|------------|----------|------------|------------|------------|------------|----------|
|                    |      | 0.2 (0.01)             | 0.4 (0.01) | 0.6 (0.02) | 0.8 (0.03) | 1 (0.04) | 1.2 (0.04) | 1.4 (0.05) | 1.6 (0.06) | 1.8 (0.06) | 2 (0.07) |
| Engine speed (rpm) | 700  | 90                     | 90         | 88         | 76         | 68       | 68         | 68         | 68         | 68         | 68       |
|                    | 1000 | 90                     | 90         | 88         | 76         | 68       | 68         | 68         | 68         | 68         | 68       |
|                    | 1500 | 89                     | 88         | 80         | 64         | 56       | 56         | 56         | 56         | 56         | 56       |
|                    | 2000 | 88                     | 84         | 64         | 40         | 36       | 35         | 35         | 35         | 35         | 35       |
|                    | 2500 | 88                     | 80         | 56         | 36         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 3000 | 64                     | 56         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 3500 | 50                     | 40         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 4000 | 40                     | 38         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 4500 | 50                     | 30         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 5000 | 40                     | 30         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 5500 | 40                     | 30         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 6000 | 36                     | 36         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 6500 | 32                     | 32         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |
|                    | 7000 | 32                     | 32         | 30         | 30         | 30       | 30         | 30         | 30         | 30         | 30       |

**Time Needed for Diagnosis:** 200 engine revs.

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

- Normality Judgement

### Judgement Value

| Malfunction Criteria                    | Threshold Value    |
|-----------------------------------------|--------------------|
| Catalyst damage misfire judgement value | $<$ Value of Map 2 |

**Time Needed for Diagnosis:** 200 engine revs.

## **BM:DTC P0302 CYLINDER 2 MISFIRE DETECTED**

### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0301. <Ref. to GD(H6DO)-88, DTC P0301 CYLINDER 1 MISFIRE DETECTED, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## **BN:DTC P0303 CYLINDER 3 MISFIRE DETECTED**

### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0301. <Ref. to GD(H6DO)-88, DTC P0301 CYLINDER 1 MISFIRE DETECTED, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## **BO:DTC P0304 CYLINDER 4 MISFIRE DETECTED**

### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0301. <Ref. to GD(H6DO)-88, DTC P0301 CYLINDER 1 MISFIRE DETECTED, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## **BP:DTC P0305 CYLINDER 5 MISFIRE DETECTED**

### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0301. <Ref. to GD(H6DO)-88, DTC P0301 CYLINDER 1 MISFIRE DETECTED, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## **BQ:DTC P0306 CYLINDER 6 MISFIRE DETECTED**

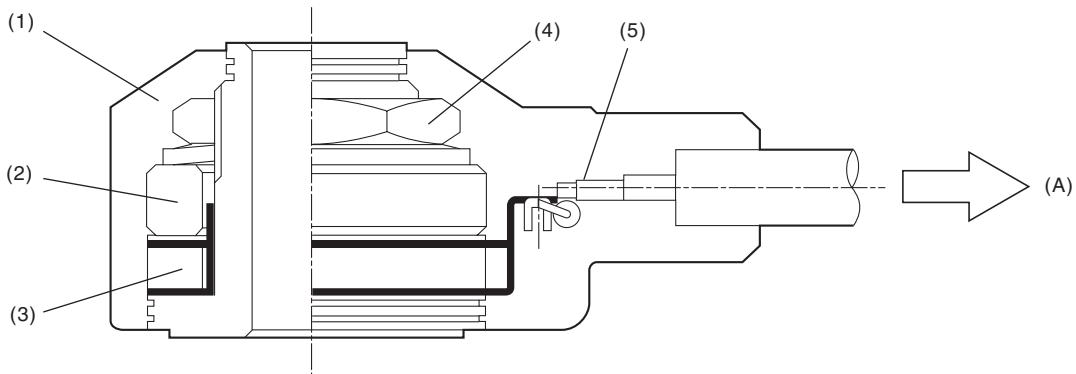
### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P0301. <Ref. to GD(H6DO)-88, DTC P0301 CYLINDER 1 MISFIRE DETECTED, Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION


### BR:DTC P0327 KNOCK SENSOR 1 CIRCUIT LOW (BANK 1 OR SINGLE SENSOR)

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of knock sensor.

Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01707

(A) To knock sensor harness

|            |                           |                |
|------------|---------------------------|----------------|
| (1) Case   | (3) Piezoelectric element | (5) Resistance |
| (2) Weight | (4) Nut                   |                |

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | < 0.243 V       |

**Time Needed for Diagnosis:** 1000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

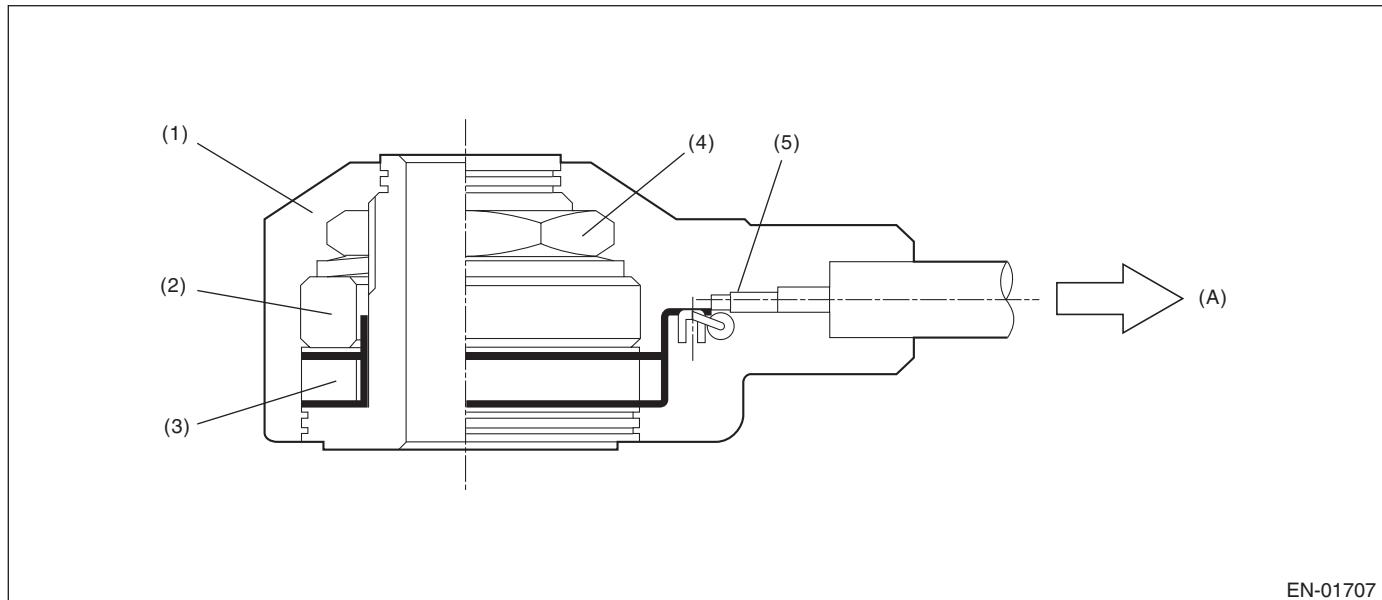
#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 0.243$ V  |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION


### BS:DTC P0328 KNOCK SENSOR 1 CIRCUIT HIGH (BANK 1 OR SINGLE SENSOR)

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of knock sensor.

Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



(A) To knock sensor harness

|            |                           |                |
|------------|---------------------------|----------------|
| (1) Case   | (3) Piezoelectric element | (5) Resistance |
| (2) Weight | (4) Nut                   |                |

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value        |
|----------------------|------------------------|
| Output voltage       | $\geq 4.709 \text{ V}$ |

**Time Needed for Diagnosis:** 1000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value     |
|----------------------|---------------------|
| Output voltage       | $< 4.709 \text{ V}$ |

**Time Needed for Diagnosis:** Less than 1 second

## BT:DTC P0332 KNOCK SENSOR 2 CIRCUIT LOW (BANK 2)

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

For the detection standard, refer to DTC P0327. <Ref. to GD(H6DO)-94, DTC P0327 KNOCK SENSOR 1 CIRCUIT LOW (BANK 1 OR SINGLE SENSOR), Diagnostic Trouble Code (DTC) Detecting Criteria.>

## BU:DTC P0333 KNOCK SENSOR 2 CIRCUIT HIGH (BANK 2)

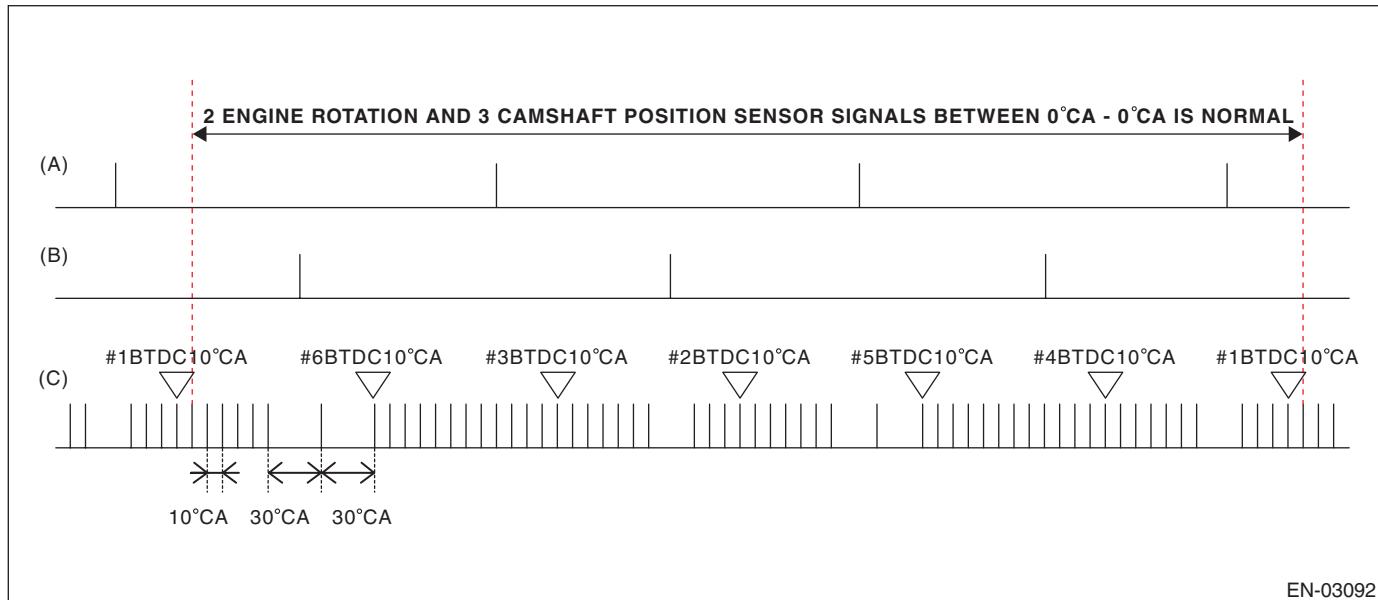
### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

For the detection standard, refer to DTC P0328. <Ref. to GD(H6DO)-96, DTC P0328 KNOCK SENSOR 1 CIRCUIT HIGH (BANK 1 OR SINGLE SENSOR), Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION


### BV:DTC P0335 CRANKSHAFT POSITION SENSOR “A” CIRCUIT

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the crankshaft position sensor.

Judge as NG when the crank signal is not input even though the starter was rotated.

#### 2. COMPONENT DESCRIPTION




EN-03092

(A) Camshaft signal (RH)

(B) Camshaft signal (LH)

(C) Crankshaft signal



EN-02188

(1) Crankshaft position sensor

(2) Crank sprocket

(3) Crankshaft half-turn

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria              | Threshold Value |
|-----------------------------------|-----------------|
| Starter switch                    | ON              |
| Crankshaft position sensor signal | Not detected    |
| Battery voltage                   | $\geq 8$ V      |

**Time Needed for Diagnosis:** 3000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

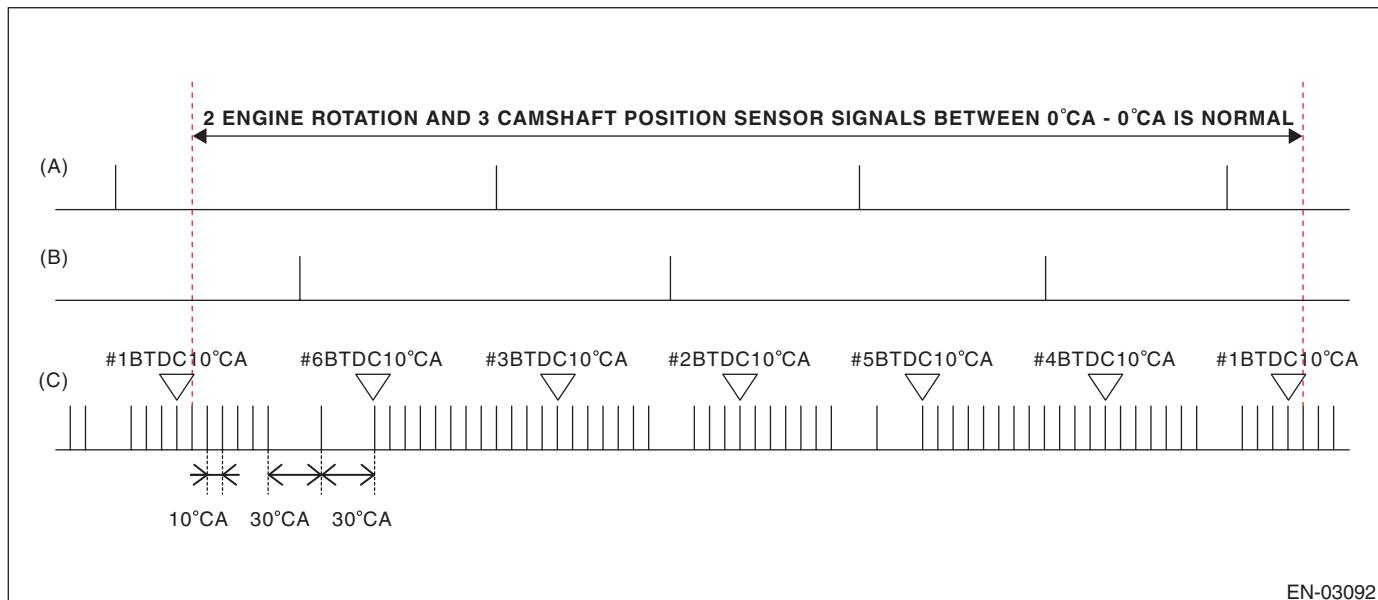
#### Judgement Value

| Malfunction Criteria              | Threshold Value |
|-----------------------------------|-----------------|
| Crankshaft position sensor signal | Input exists    |
| Battery voltage                   | $\geq 8$ V      |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

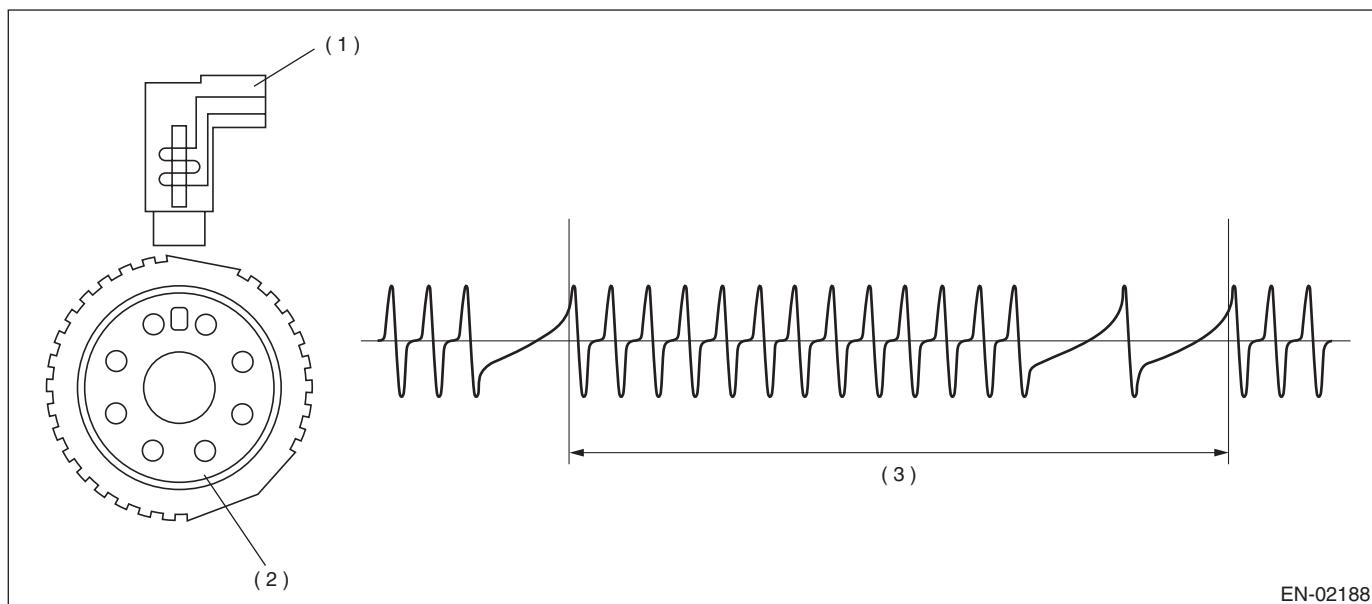
## GENERAL DESCRIPTION


### BW:DTC P0336 CRANKSHAFT POSITION SENSOR “A” CIRCUIT RANGE/ PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Detect for faults in crankshaft position sensor output properties.

Judge as NG when there is a problem in the number of crankshaft signals for every revolution.


#### 2. COMPONENT DESCRIPTION



(A) Camshaft signal (RH)

(B) Camshaft signal (LH)

(C) Crankshaft signal



(1) Crankshaft position sensor

(2) Crank sprocket

(3) Crankshaft half-turn

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Battery voltage      | $\geq 8$ V        |
| Engine speed         | < 3000 rpm        |

### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously under 3000 rpm engine speed.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

#### Judgement Value

| Malfunction Criteria                        | Threshold Value |
|---------------------------------------------|-----------------|
| Cylinder number identification              | Completed       |
| Amount of crank sensor signal during 1 rev. | Not = 30        |

**Time Needed for Diagnosis:** 10 engine revs.

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

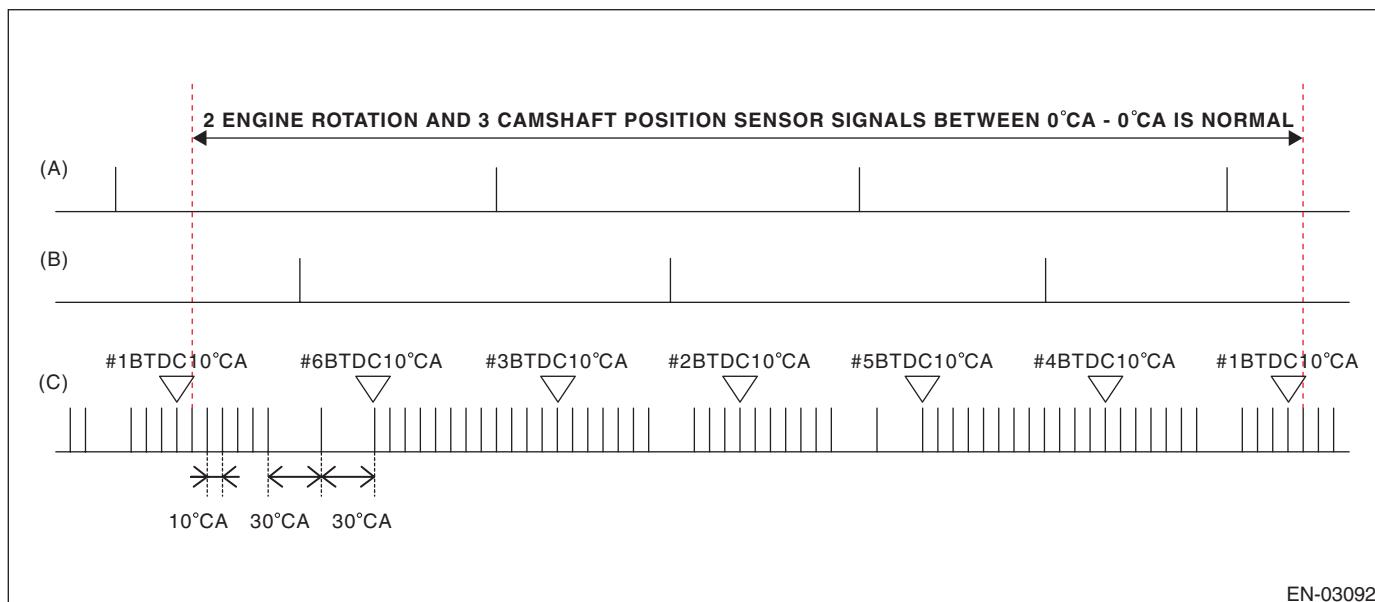
#### Judgement Value

| Malfunction Criteria                        | Threshold Value |
|---------------------------------------------|-----------------|
| Cylinder number identification              | Completed       |
| Amount of crank sensor signal during 1 rev. | = 30            |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

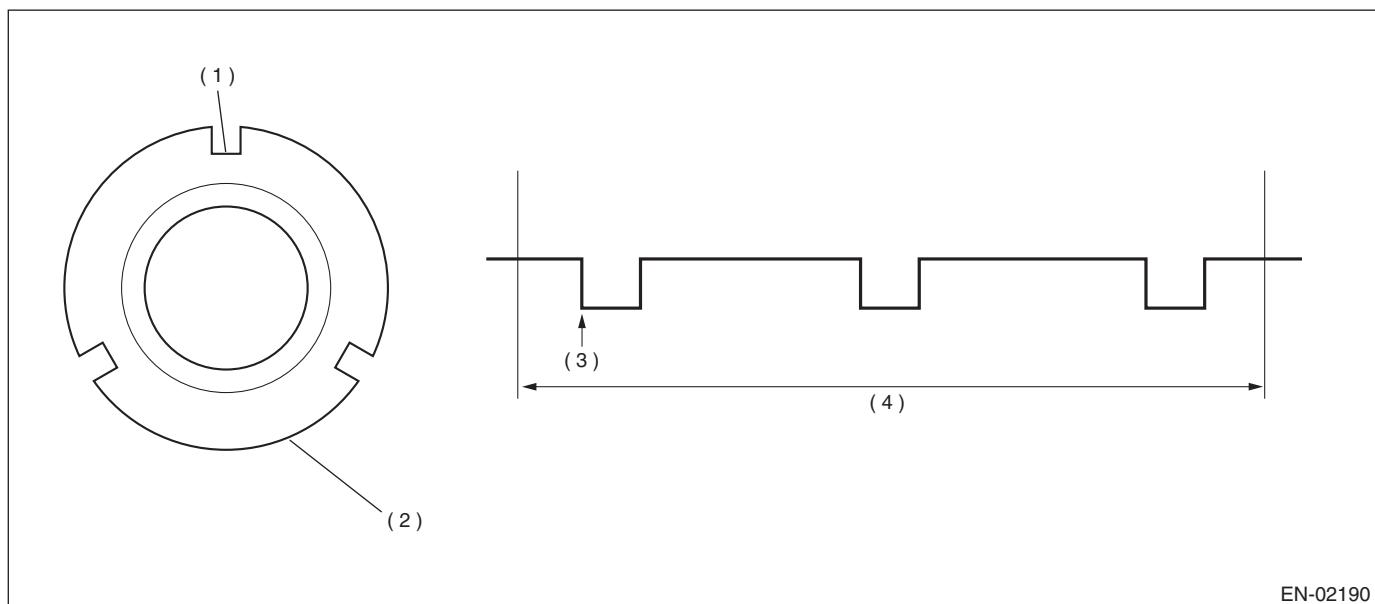

### BX:DTC P0340 CAMSHAFT POSITION SENSOR “A” CIRCUIT (BANK 1 OR SINGLE SENSOR)

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the camshaft position sensor.

Judge as NG when the number of camshaft signals remains abnormal.

#### 2. COMPONENT DESCRIPTION




(A) Camshaft signal (RH)

(B) Camshaft signal (LH)

(C) Crankshaft signal

EN-03092



(1) Throttle

(2) Camshaft plate

(3) Detecting point

(4) Camshaft one revolution (engine two revolutions)

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Battery voltage      | $\geq 8$ V        |

### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement 1

Judge as NG when the condition where the number of camshaft position sensor signals are less than 3 times during 2 engine revs. continues.

#### Judgement Value

| Malfunction Criteria                            | Threshold Value |
|-------------------------------------------------|-----------------|
| Amount of camshaft sensor signal during 2 revs. | < 3 time(s)     |

**Time Needed for Diagnosis:** Two engine revolutions  $\times$  4 °CA

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement 1

Judge as OK and clear the NG when the malfunction criteria below are met.

#### Judgement Value

| Malfunction Criteria            | Threshold Value  |
|---------------------------------|------------------|
| Camshaft position sensor signal | $\geq 3$ time(s) |

**Time Needed for Diagnosis:** Two engine revolutions

#### • Abnormality Judgement 2

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria            | Threshold Value |
|---------------------------------|-----------------|
| Starter                         | ON              |
| Camshaft position sensor signal | No input        |

**Time Needed for Diagnosis:** 3000 ms

#### • Normality Judgement 2

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria            | Threshold Value |
|---------------------------------|-----------------|
| Camshaft position sensor signal | Input exists    |

**Time Needed for Diagnosis:** Less than 1 second

## BY:DTC P0345 CAMSHAFT POSITION SENSOR “A” CIRCUIT (BANK 2)

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

For the detection standard, refer to DTC P0340. <Ref. to GD(H6DO)-102, DTC P0340 CAMSHAFT POSITION SENSOR “A” CIRCUIT (BANK 1 OR SINGLE SENSOR), Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

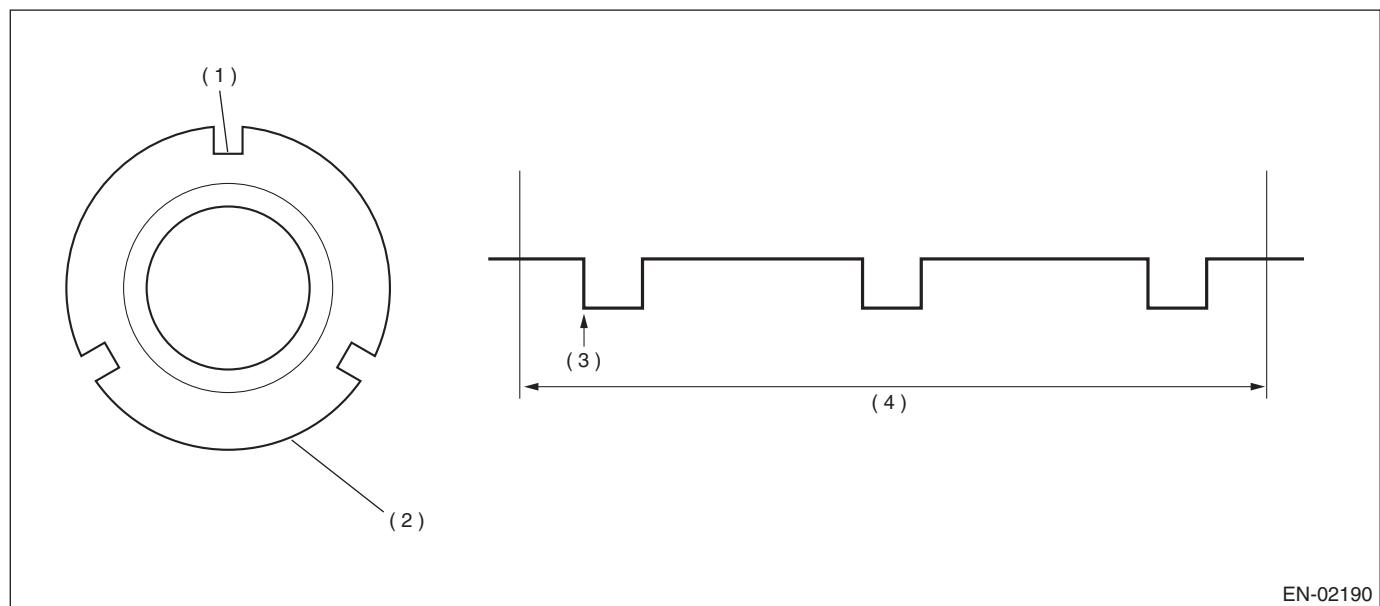
### BZ:DTC P0365 CAMSHAFT POSITION SENSOR “B” CIRCUIT (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the camshaft position sensor.

Judge as NG when the number of camshaft signals remains abnormal.

#### 2. COMPONENT DESCRIPTION




EN-03092

(A) Camshaft signal (RH)

(B) Camshaft signal (LH)

(C) Crankshaft signal



EN-02190

(1) Throttle

(3) Detecting point

(4) Camshaft one revolution (two engine revolutions)

(2) Camshaft plate

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Battery voltage      | $\geq 8$ V        |

### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the condition where the number of camshaft position sensor signals are less than 3 time(s) during 2 engine revs. continues.

#### Judgement Value

| Malfunction Criteria                            | Threshold Value |
|-------------------------------------------------|-----------------|
| Amount of camshaft sensor signal during 2 revs. | < 3 time(s)     |

**Time Needed for Diagnosis:** Two engine revolutions × 50

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG when the malfunction criteria below are met.

#### Judgement Value

| Malfunction Criteria            | Threshold Value |
|---------------------------------|-----------------|
| Camshaft position sensor signal | ≥ 3 time(s)     |

**Time Needed for Diagnosis:** Two engine revolutions

## CA:DTC P0390 CAMSHAFT POSITION SENSOR “B” CIRCUIT (BANK 2)

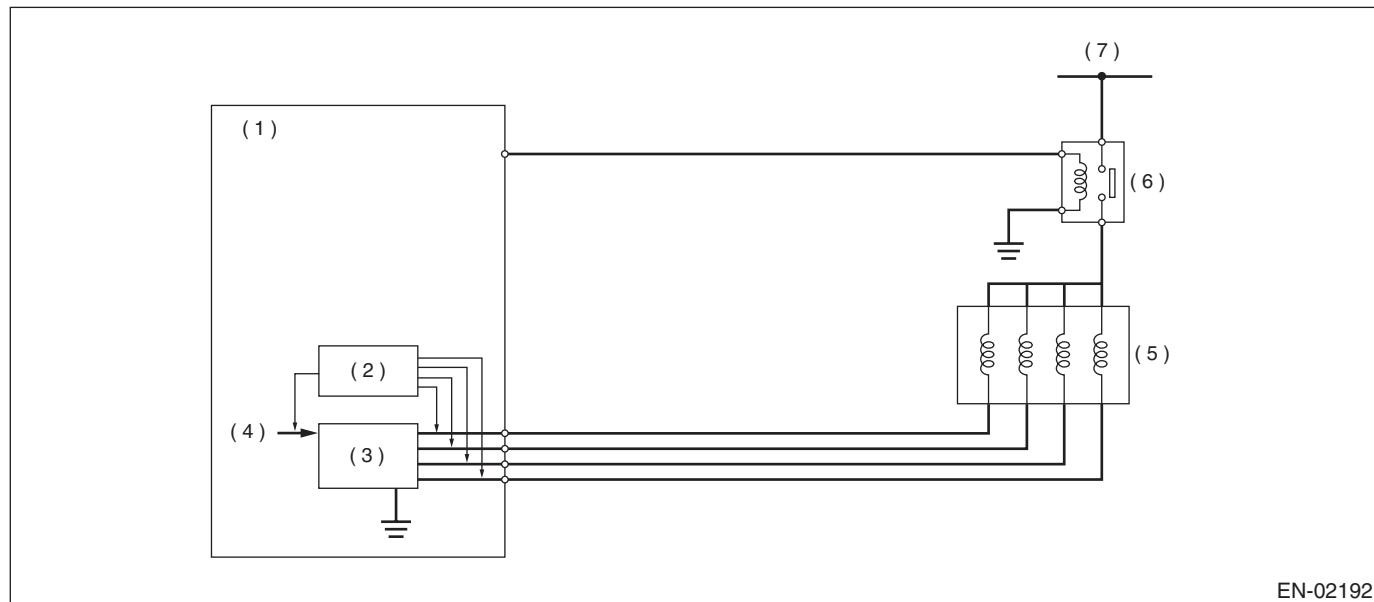
### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

For the detection standard, refer to DTC P0365. <Ref. to GD(H6DO)-104, DTC P0365 CAMSHAFT POSITION SENSOR “B” CIRCUIT (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION


### CB:DTC P0400 EXHAUST GAS RECIRCULATION FLOW

#### 1. OUTLINE OF DIAGNOSIS

Detect EGR system malfunction.

Intake manifold pressure (negative pressure) is constant because the throttle valve is fully closed during deceleration fuel cut. At this time, when the EGR valve is opened/closed, the intake manifold pressure will change. EGR System OK/NG is judged by the range of this change.

#### 2. COMPONENT DESCRIPTION



EN-02192

|                       |               |                          |
|-----------------------|---------------|--------------------------|
| (1) ECM               | (4) CPU       | (6) Main relay           |
| (2) Detecting circuit | (5) EGR valve | (7) Battery power supply |
| (3) Switching circuit |               |                          |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 3. ENABLE CONDITION

| Secondary Parameters                                                                       | Enable Conditions                   |
|--------------------------------------------------------------------------------------------|-------------------------------------|
| Elapsed time after starting the engine                                                     | $\geq 40$ s                         |
| Engine coolant temperature                                                                 | $\geq 75$ °C(167 °F)                |
| Engine speed                                                                               | 1200 rpm — 3250 rpm                 |
| Intake manifold pressure (absolute pressure)                                               | $< 46.7$ kPa (350 mmHg, 13.8 inHg)  |
| Ambient air temperature                                                                    | $\geq 5$ °C(41 °F)                  |
| Throttle position                                                                          | $< 0.25$ °                          |
| Battery voltage                                                                            | $\geq 10.9$ V                       |
| Barometric pressure                                                                        | $\geq 75$ kPa (563 mmHg, 22.2 inHg) |
| Vehicle speed                                                                              | $\geq 53$ km/h (32.9 MPH)           |
| Fuel shut-off function                                                                     | In operation                        |
| Neutral switch                                                                             | OFF                                 |
| After neutral switch ON/OFF change                                                         | $\geq$ Value from Map               |
| No load change (A/C, power steering, lighting, rear defogger, heater fan and radiator fan) | $\geq 5000$ ms                      |

### Map

|                                    |              |              |             |             |           |            |            |            |
|------------------------------------|--------------|--------------|-------------|-------------|-----------|------------|------------|------------|
| Engine coolant temperature °C (°F) | -40<br>(-40) | -30<br>(-22) | -20<br>(-4) | -10<br>(14) | 0<br>(32) | 10<br>(50) | 20<br>(68) | 30<br>(86) |
| After neutral switch change msec   | 0            | 0            | 0           | 0           | 0         | 0          | 0          | 0          |

|                                    |             |             |             |             |             |             |              |              |
|------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|
| Engine coolant temperature °C (°F) | 40<br>(104) | 50<br>(122) | 60<br>(140) | 70<br>(158) | 80<br>(176) | 90<br>(194) | 100<br>(212) | 110<br>(230) |
| After neutral switch change msec   | 0           | 0           | 0           | 0           | 0           | 0           | 0            | 0            |

### 4. GENERAL DRIVING CYCLE

During deceleration fuel cut from 53 km/h (approx. 33 MPH) or more, perform diagnosis once. Be careful of vehicle speed and engine speed. (Diagnosis will not be completed if the vehicle speed and engine speed conditions become out of specification due to deceleration.)

### 5. DIAGNOSTIC METHOD

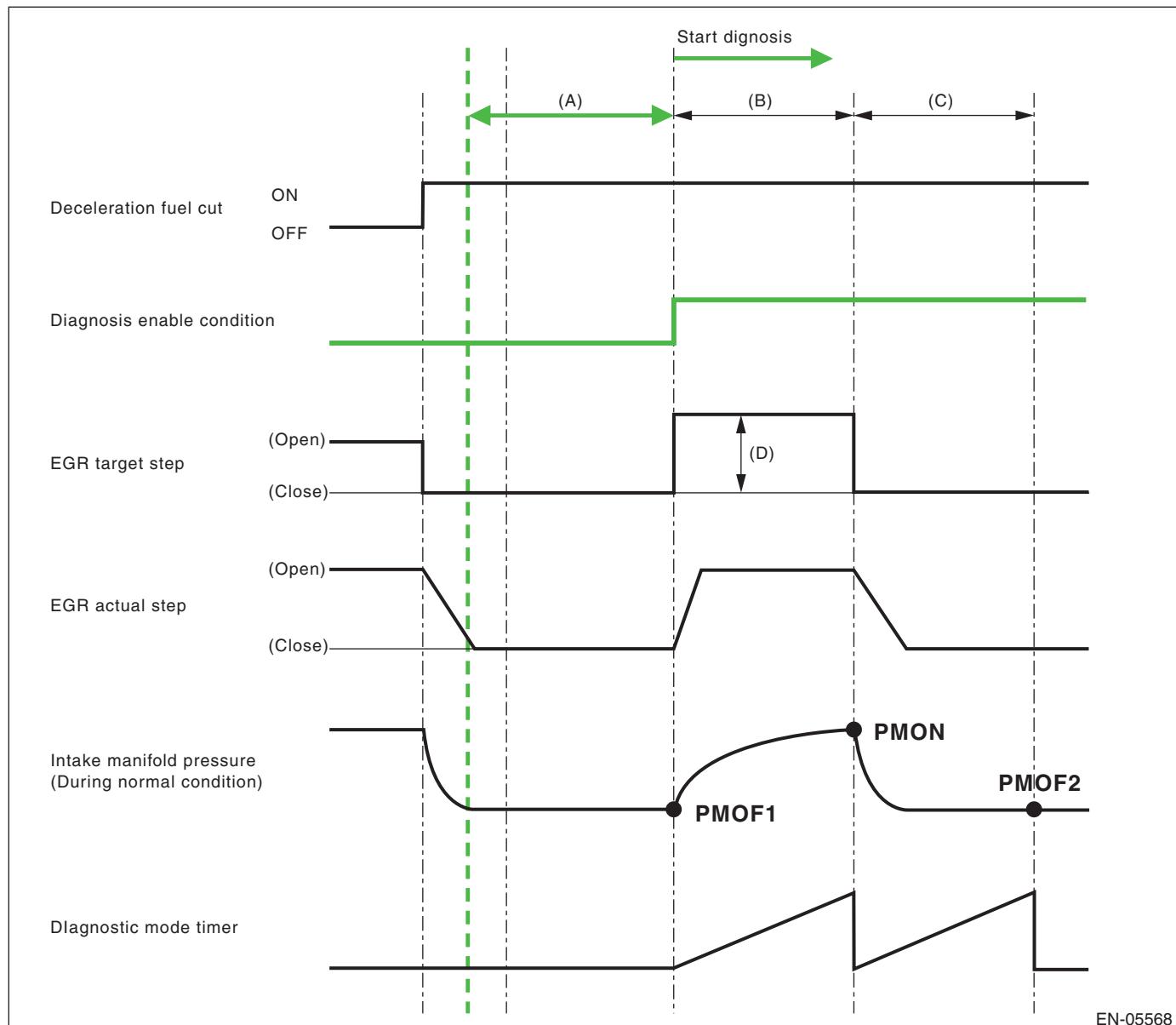
Measure the pressure values when the enable conditions are established, and perform diagnosis by calculating those results.

1. Label the intake manifold pressure value as PMOF1, which is observed when enable conditions are established, and set the EGR target step to 50 steps (nearly full open).
2. Label the intake manifold pressure value as PMON, which is observed after one second has passed since EGR target step was set to 50 steps (when the enable conditions were established), and set the EGR target step to 0.
3. Label the intake manifold pressure as PMOF2, which is observed after one second has passed since EGR target step was set to 0 (after two seconds have passed since the enable conditions were established).

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

#### Judgement Value


| Malfunction Criteria     | Threshold Value                   |
|--------------------------|-----------------------------------|
| PMON – (PMOF1 + PMOF2)/2 | $< 1.6$ kPa (11.8 mmHg, 0.5 inHg) |

**Time Needed for Diagnosis:** 1 time

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION



(A) 2000 ms

(C) 1500 ms

(D) 50 step(s)

(B) 1500 ms

### • Normality Judgement

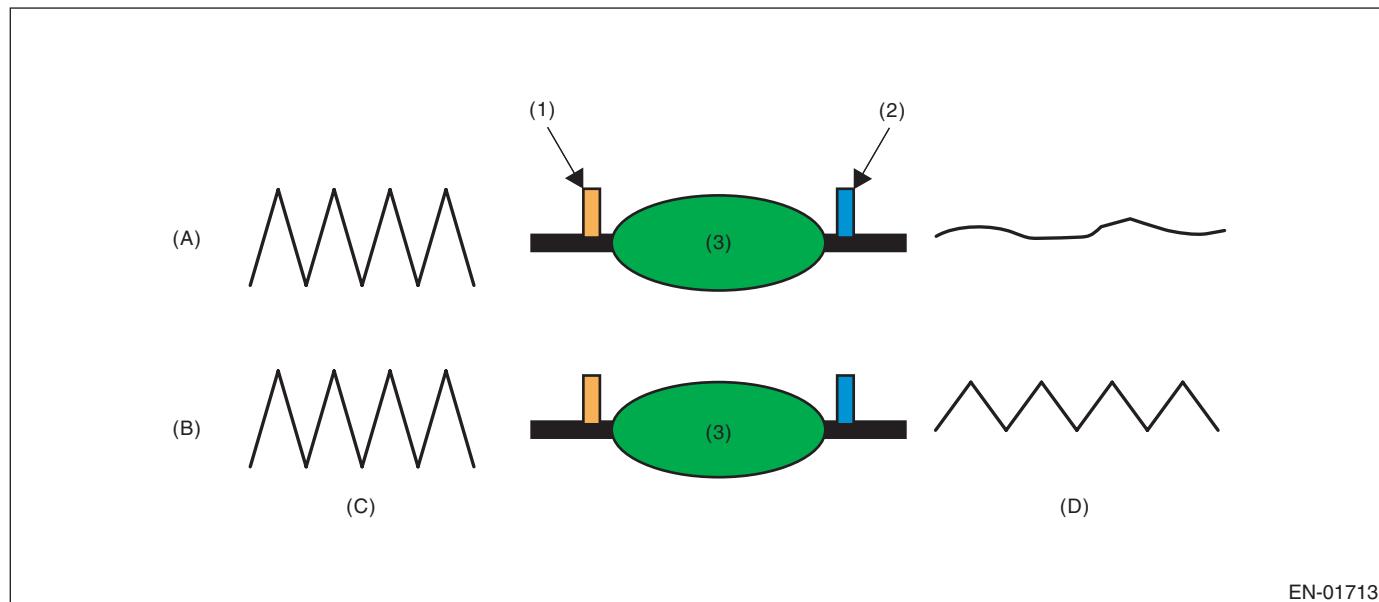
Judge as OK and clear the NG if the following conditions are established.

#### Judgement Value

| Malfunction Criteria     | Threshold Value                              |
|--------------------------|----------------------------------------------|
| PMON – (PMOF1 + PMOF2)/2 | $\geq 1.6 \text{ kPa (11.8 mmHg, 0.5 inHg)}$ |

**Time Needed for Diagnosis:** 1 time

### CC:DTC P0420 CATALYST SYSTEM EFFICIENCY BELOW THRESHOLD (BANK 1)


#### 1. OUTLINE OF DIAGNOSIS

Detect the deterioration of the catalyst function.

Though the front oxygen sensor output would change slowly with a new catalyst, the sensor output with a deteriorated catalyst becomes high and the inversion time is shortened.

For this reason, the catalyst diagnosis is carried out by monitoring the front oxygen sensor output and comparing it with the front oxygen (A/F) sensor output.

#### 2. COMPONENT DESCRIPTION



EN-01713

(A) Normal  
(B) Deterioration

(C) Output waveform from the front oxygen (A/F) sensor

(D) Output waveform from the rear oxygen Sensor

(1) Front oxygen (A/F) sensor

(2) Front oxygen sensor

(3) Catalytic converter

#### 3. ENABLE CONDITION

| Secondary Parameters                                                | Enable Conditions                                          |
|---------------------------------------------------------------------|------------------------------------------------------------|
| Battery voltage                                                     | $\geq 10.9$ V                                              |
| Barometric pressure                                                 | $\geq 75$ kPa (563 mmHg, 22.2 inHg)                        |
| Engine coolant temperature                                          | $\geq 75$ °C (167 °F)                                      |
| Estimated catalyst temperature                                      | $\geq 520$ °C (968 °F)                                     |
| Misfire detection every 200 rotations                               | < 7 time(s)                                                |
| Learning value of evaporation gas density                           | < 0.2                                                      |
| Sub feedback                                                        | In operation                                               |
| Evaporative system diagnosis                                        | Not in operation                                           |
| Time of difference (< 0.10) between actual lambda and target lambda | $\geq 1000$ ms                                             |
| Vehicle speed                                                       | $> 60$ km/h (37.3 MPH)                                     |
| Amount of intake air                                                | $\geq 10$ g/s (0.35 oz/s)<br>and<br>$< 70$ g/s (2.47 oz/s) |
| Engine load change every 0.5 engine speed.                          | $< 0.02$ g/rev (0 oz/rev)                                  |
| Rear oxygen output change from 660 mV or less to 660 mV or more     | Experienced after fuel cut                                 |
| Elapsed time after starting the engine                              | $\geq 220$ s                                               |
| Purge execution calculated time                                     | $\geq 5$ s                                                 |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 4. GENERAL DRIVING CYCLE

Perform the diagnosis only once at a constant 60 km/h (37.3 MPH) or higher.

### 5. DIAGNOSTIC METHOD

After establishing the execution conditions, calculate the front oxygen (A/F) sensor lambda deviation cumulative value ( $\sum |(sglmd_n - sglmd_{n-1})|$ ) and rear oxygen sensor output voltage deviation cumulative value ( $\sum |(ro2sad_n - ro2sad_{n-1})|$ ) per 32 milliseconds  $\times 4$ , and when the front oxygen (A/F) sensor lambda deviation cumulative value ( $\sum |(sglmd_n - sglmd_{n-1})|$ ) becomes the predetermined value or more, calculate the diagnostic value.

#### • Abnormality Judgement

If the duration of time while the following conditions are met is within the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                                | Threshold Value |
|---------------------------------------------------------------------|-----------------|
| $\sum  (ro2sad_n - ro2sad_{n-1})  / \sum  (sglmd_n - sglmd_{n-1}) $ | > 25            |

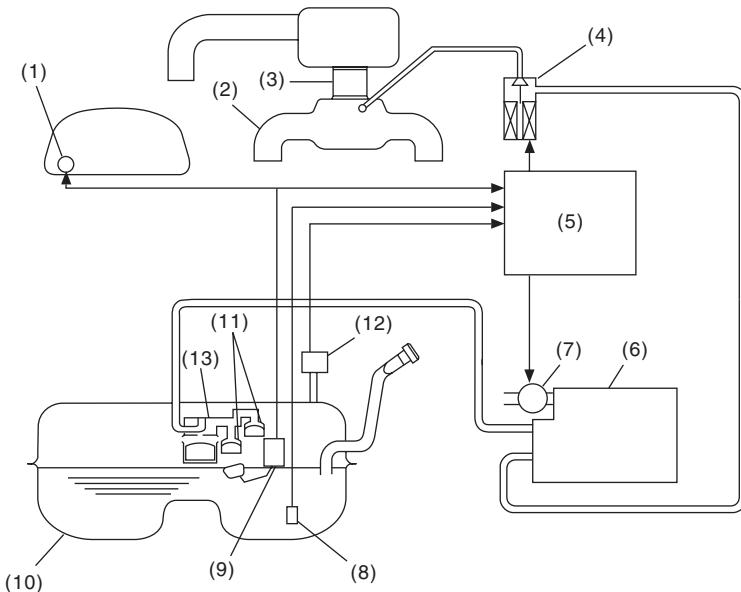
**Time Needed for Diagnosis:** 30 — 55 seconds

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is within the predetermined time.

#### Judgement Value


| Malfunction Criteria                                                | Threshold Value |
|---------------------------------------------------------------------|-----------------|
| $\sum  (ro2sad_n - ro2sad_{n-1})  / \sum  (sglmd_n - sglmd_{n-1}) $ | $\leq 25$       |

**Time Needed for Diagnosis:** 30 — 55 seconds

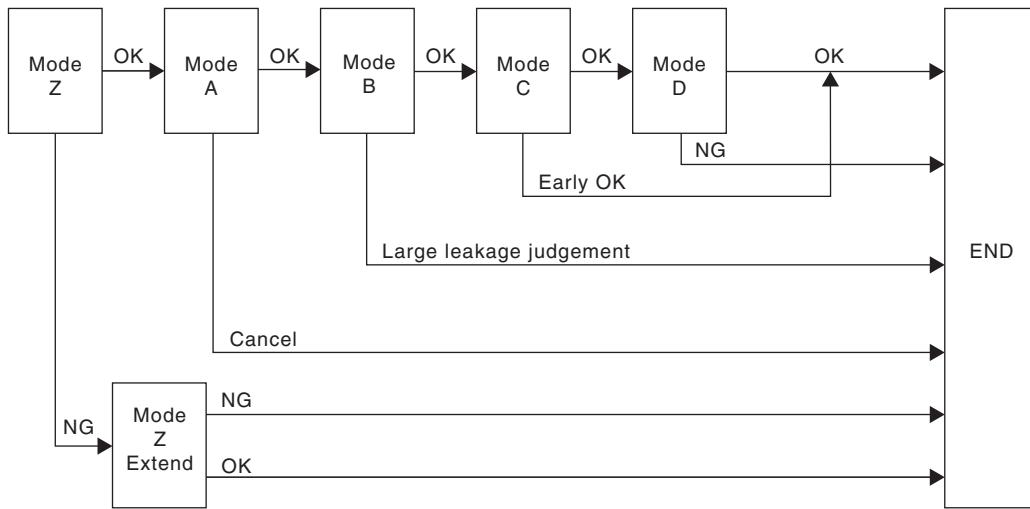
### CD:DTC P0442 EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (SMALL LEAK)

#### 1. OUTLINE OF DIAGNOSIS

Check if there is a leakage in fuel system or not, and perform the function diagnosis of valve.



EN-03722


|                                  |                             |                                |
|----------------------------------|-----------------------------|--------------------------------|
| (1) Fuel gauge                   | (6) Canister                | (10) Fuel tank                 |
| (2) Intake manifold              | (7) Drain valve             | (11) Fuel cut valve            |
| (3) Throttle body                | (8) Fuel temperature sensor | (12) Fuel tank pressure sensor |
| (4) Purge control solenoid valve | (9) Fuel level sensor       | (13) Vent valve                |
| (5) Engine control module (ECM)  |                             |                                |

In this system diagnosis, check for leakage and valve function is conducted by changing the fuel tank pressure and monitoring the pressure change using the fuel tank pressure sensor. When in 0.04 inch diagnosis, perform in the order of mode Z → mode A → mode B → mode C and mode D; When in 0.02 inch diagnosis, perform in the order of mode A → mode B → mode C → mode D and mode E.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 0.04-inch Diagnosis



EN-02872

| Mode                                                                               | Mode Description                                                                                                                                                                              | Diagnosis Period                                 |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Mode Z<br>(Purge control solenoid valve opening failure diagnosis)                 | Perform purge control solenoid valve opening failure diagnosis from the size of tank pressure variation from diagnosis start.                                                                 | 5000 ms + 3000 ms — 5000 ms + 3000 ms + 13000 ms |
| Mode A<br>(Estimated evaporation amount)                                           | Calculate the tank pressure change amount (P1).                                                                                                                                               | 10000 ms                                         |
| Mode B<br>(Sealed negative pressure, large leakage judgement)                      | Decrease the pressure in the tank to the target value by introducing the intake manifold pressure to the fuel tank.<br>If the tank pressure cannot be reduced, it is diagnosed as large leak. | 0 — 10000 ms + 25000 ms                          |
| Mode C<br>(Pressure increase check, advanced OK judgement)                         | Wait until the tank pressure returns to the target (start level of P2 calculation). If the tank pressure does not become the value, make advanced OK judgement.                               | 0 — 14000 ms                                     |
| Mode D<br>(Negative pressure variation measurement, evaporation leakage diagnosis) | Calculate the tank pressure variation (P2), and obtain the diagnostic value using P1 found in Mode A.<br>Perform the evaporation diagnosis using the diagnostic value.                        | 0 ms + 10000 ms                                  |

### Mode Table for Evaporative Emission Control System Diagnosis

| Mode   | Behavior of tank internal pressure under normal conditions               | Diagnostic item                                             | DTC   |
|--------|--------------------------------------------------------------------------|-------------------------------------------------------------|-------|
| Mode Z | Roughly the same as barometric pressure (Same as 0 kPa (0 mmHg, 0 inHg)) | Purge control solenoid valve is judged to be open.          | P0457 |
| Mode A | Pressure is in proportion to amount of evaporative emission.             | —                                                           | None  |
| Mode B | Negative pressure is formed due to intake manifold negative pressure     | Large leak                                                  | P0457 |
| Mode C | Reaches target pressure                                                  | —                                                           | None  |
| Mode D | Pressure change is small.                                                | EVAP system large leak determination.<br>[1.0 mm (0.04 in)] | P0442 |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 0.02-inch Diagnosis



EN-02871

| Mode                                                 | Mode Description                                                                                                                                                                               | Diagnosis Period                      |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Mode A<br>(0 point compensation)                     | When the pressure in the tank is not near 0 mmHg, wait until it returns to 0 point (near 0 mmHg).                                                                                              | 0 — Value of Map 1                    |
| Mode B<br>(Negative pressure introduced)             | Decrease the pressure in the tank to the target value by introducing the intake manifold pressure to the fuel tank.                                                                            | 0 — Value of Map 2                    |
| Mode C<br>(Negative pressure maintained)             | Wait until the tank pressure returns to the target (start level of P2 calculation).                                                                                                            | 0 — 20000 ms + 0 + Value of Map 2     |
| Mode D<br>(Negative pressure change calculated)      | Calculate the time it takes for the tank pressure to change to the Mode E shifting pressure. If the tank pressure does not change to the Mode E shifting pressure, make advanced OK judgement. | 0 — 0 ms + 200000 ms                  |
| Mode E<br>(Evaporation generated amount calculation) | Calculate the amount of evaporation (P1).                                                                                                                                                      | 0 — 0 ms + 200000 ms + Value of Map 3 |

### Map1

|                                        |      |               |               |               |                |               |                 |
|----------------------------------------|------|---------------|---------------|---------------|----------------|---------------|-----------------|
| Fuel level ( $\ell$ , US gal, Imp gal) | 0    | 10, 2.64, 2.2 | 20, 5.28, 4.4 | 30, 7.93, 6.6 | 40, 10.57, 8.8 | 50, 13.21, 11 | 60, 15.85, 13.2 |
| Time Needed for Diagnosis (ms)         | 6400 | 6400          | 6530          | 6660          | 7020           | 7380          | 7380            |

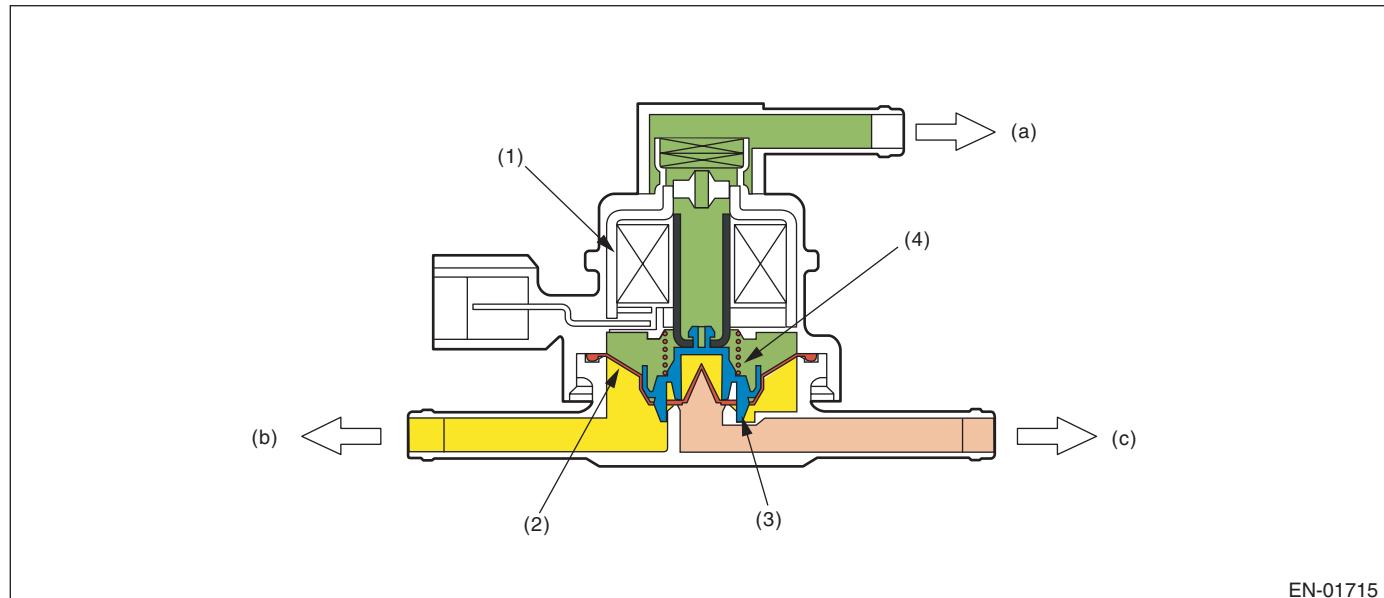
### Map2

|                                        |       |               |               |               |                |               |                 |
|----------------------------------------|-------|---------------|---------------|---------------|----------------|---------------|-----------------|
| Fuel level ( $\ell$ , US gal, Imp gal) | 0     | 10, 2.64, 2.2 | 20, 5.28, 4.4 | 30, 7.93, 6.6 | 40, 10.57, 8.8 | 50, 13.21, 11 | 60, 15.85, 13.2 |
| Time Needed for Diagnosis (ms)         | 19600 | 19600         | 19600         | 19600         | 21050          | 22500         | 22500           |

### Map 3

|                                        |       |               |               |               |                |               |                 |
|----------------------------------------|-------|---------------|---------------|---------------|----------------|---------------|-----------------|
| Fuel level ( $\ell$ , US gal, Imp gal) | 0     | 10, 2.64, 2.2 | 20, 5.28, 4.4 | 30, 7.93, 6.6 | 40, 10.57, 8.8 | 50, 13.21, 11 | 60, 15.85, 13.2 |
| Time Needed for Diagnosis (ms)         | 70000 | 70000         | 65000         | 60000         | 60000          | 60000         | 60000           |

# Diagnostic Trouble Code (DTC) Detecting Criteria


## GENERAL DESCRIPTION

## 2. COMPONENT DESCRIPTION

### Pressure control solenoid valve

PCV controls the fuel tank pressure to be equal to the atmospheric air pressure. Normally, the solenoid is set to OFF. The valve opens and closes mechanically in accordance with the pressure difference between tank and atmospheric air, or tank and canister.

The valve is forcibly opened by setting the solenoid to ON at the time of diagnosis.



(a) Barometric pressure

(b) Fuel tank

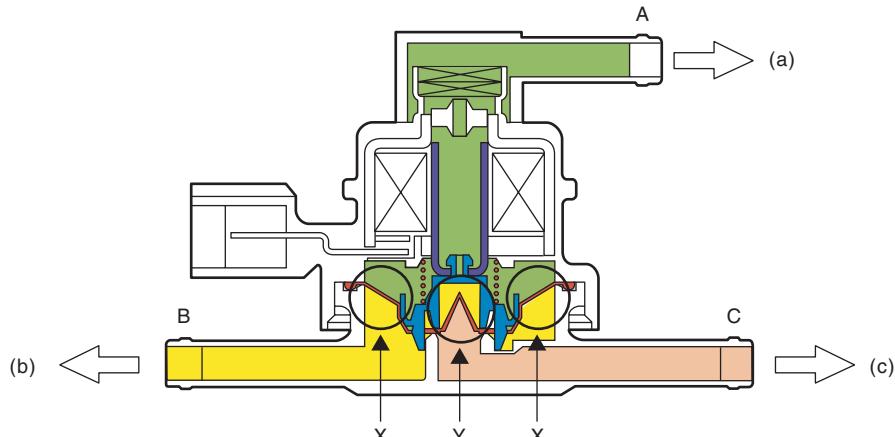
(c) Canister

(1) Solenoid

(3) Valve

(4) Spring

(2) Diaphragm


# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

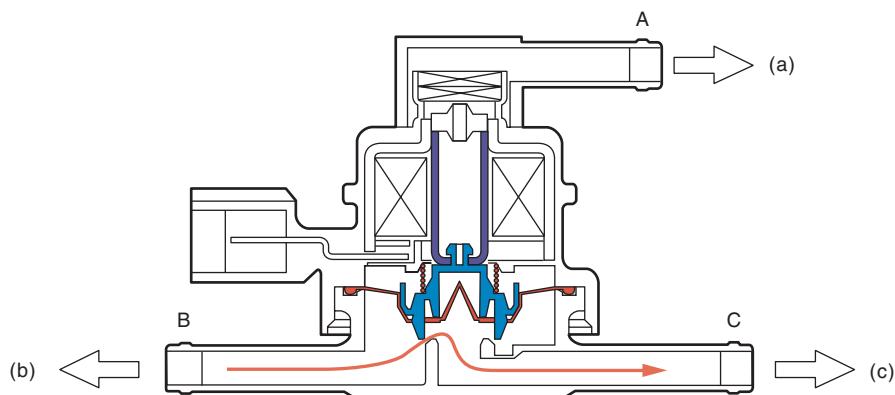
### Valve Operation and Air Flow

In the figure below, divided by the diaphragm, the part above X is charged with atmospheric air pressure, and the part below X is charged with tank pressure. Also, the part above Y is charged with tank pressure, and the part below Y is charged with canister pressure.

If the atmospheric air pressure port is A, tank pressure port is B, and canister pressure port is C, the air flows according to pressure difference from each port as shown in the table below.



EN-01716


(a) Barometric pressure

(b) Fuel tank

(c) Canister

| Condition of pressure | Flow  |
|-----------------------|-------|
| A < B (solenoid OFF)  | B → C |
| B < C (solenoid OFF)  | C → B |
| Solenoid ON           | B ↔ C |

### When A < B (solenoid OFF)



EN-01717

(a) Barometric pressure

(b) Fuel tank

(c) Canister

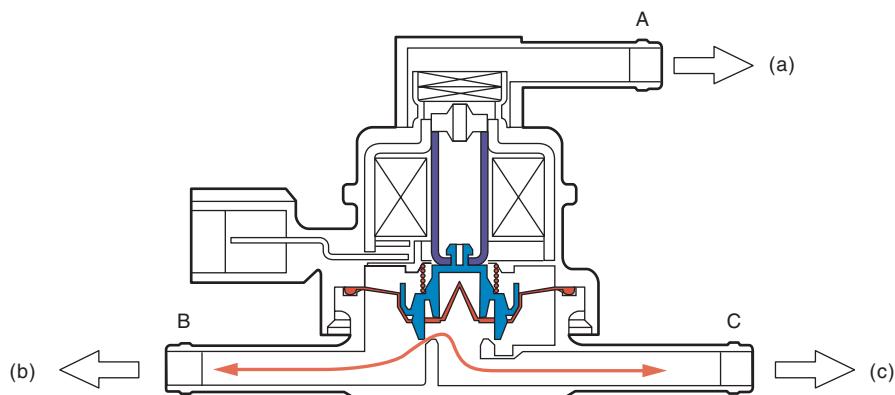
# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### When B < C (solenoid OFF)



EN-01718


(a) Barometric pressure

(b) Fuel tank

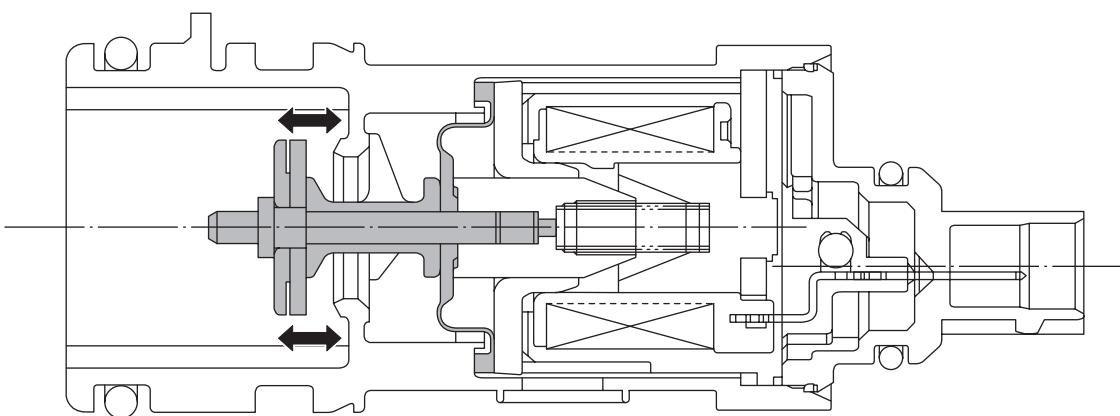
(c) Canister

(1) Valve

### When Solenoid is ON



EN-01719


(a) Barometric pressure

(b) Fuel tank

(c) Canister

### Drain valve

Drain valve controls the ambient air to be introduced to the canister.



EN-02293

### 3. ENABLE CONDITION

#### 0.04-inch Diagnosis

| Secondary Parameters                                                                            | Enable Conditions                                                                                                         |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Battery voltage                                                                                 | $\geq 10.9 \text{ V}$                                                                                                     |
| Barometric pressure                                                                             | $\geq 75 \text{ kPa (563 mmHg, 22.2 inHg)}$                                                                               |
| Total time of canister purge operation                                                          | $\geq 120000 \text{ ms}$                                                                                                  |
| Elapsed time after starting the engine                                                          | $\geq 851 \text{ s}$                                                                                                      |
| Learning value of evaporation gas density                                                       | $< 0.08$                                                                                                                  |
| Engine speed                                                                                    | 1050 rpm — 7000 rpm                                                                                                       |
| Fuel tank pressure                                                                              | $> -4 \text{ kPa (-30 mmHg, -1.2 inHg)}$                                                                                  |
| Intake manifold relative vacuum (relative pressure)                                             | $\geq -26.7 \text{ kPa (-200 mmHg, -7.9 inHg)}$                                                                           |
| Vehicle speed                                                                                   | $\geq 32 \text{ km/h (19.9 MPH)}$                                                                                         |
| Fuel level                                                                                      | 9.6 $\ell$ (2.54 US gal, 2.11 Imp gal) — 54.4 $\ell$ (14.37 US gal, 11.97 Imp gal)                                        |
| Closed air/fuel ratio control                                                                   | In operation                                                                                                              |
| Fuel temperature                                                                                | $-10 \text{ }^{\circ}\text{C} (14 \text{ }^{\circ}\text{F}) — 45 \text{ }^{\circ}\text{C} (113 \text{ }^{\circ}\text{F})$ |
| Intake air temperature                                                                          | $\geq -10 \text{ }^{\circ}\text{C} (14 \text{ }^{\circ}\text{F})$                                                         |
| Pressure change every one second                                                                | $< 1.7 \text{ mmHg (Mode A)}$<br>$< 1.7 \text{ mmHg (Mode D)}$<br>$< 1.7 \text{ mmHg (Mode A)}$                           |
| Minimum pressure change value every one second — Maximum pressure change value every one second | $< 1.7 \text{ mmHg (Mode D)}$                                                                                             |
| Change of fuel level per 128 milliseconds                                                       | $< 2 \text{ } \ell$ (0.53 US gal, 0.44 Imp gal)                                                                           |
| Air fuel ratio                                                                                  | 0.76 — 1.25                                                                                                               |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 0.02-inch Diagnosis

| Secondary Parameters                                                                            | Enable Conditions                                                                                                                                          |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>At starting a diagnosis</b>                                                                  |                                                                                                                                                            |
| Evap. diagnosis                                                                                 | Incomplete                                                                                                                                                 |
| Battery voltage                                                                                 | $\geq 10.9$ V                                                                                                                                              |
| Barometric pressure                                                                             | $\geq 75$ kPa (563 mmHg, 22.2 inHg)                                                                                                                        |
| Time since last incomplete 0.02-inch leakage diagnosis                                          |                                                                                                                                                            |
| When cancelling in mode A                                                                       | $> 120000$ ms                                                                                                                                              |
| When cancelling in other than mode A                                                            | $> 600000$ ms                                                                                                                                              |
| Total time of canister purge operation                                                          | $\geq 120000$ ms                                                                                                                                           |
| Elapsed time after starting the engine                                                          | $\geq 120$ s                                                                                                                                               |
| Fuel temperature                                                                                | $-10$ °C (14 °F) — $55$ °C (131 °F)                                                                                                                        |
| Fuel level                                                                                      | $9.6$ ℥ (2.54 US gal, 2.11 Imp gal) — $54.4$ ℥ (14.37 US gal, 11.97 Imp gal)                                                                               |
| Intake manifold relative vacuum (relative pressure)                                             | $\geq -8$ kPa (-60 mmHg, -2.4 inHg)                                                                                                                        |
| Fuel tank pressure                                                                              | $-0.7$ kPa (-5 mmHg, -0.2 inHg) — $0.4$ kPa (2.9 mmHg, 0.1 inHg)                                                                                           |
| Vehicle speed                                                                                   | $50$ km/h (31.1 MPH) — $510$ km/h (316.9 MPH) continues for $125000$ ms                                                                                    |
| Closed air/fuel ratio control                                                                   | In operation                                                                                                                                               |
| Engine speed                                                                                    | $1050$ rpm — $7000$ rpm                                                                                                                                    |
| <b>During diagnosis</b>                                                                         |                                                                                                                                                            |
| Change of fuel level                                                                            | $\leq$ Value of Map 4                                                                                                                                      |
| Pressure change every one second                                                                | $< 0$ kPa (0.3 mmHg, 0 inHg)                                                                                                                               |
| Minimum pressure change value every one second — Maximum pressure change value every one second | $< 0.1$ kPa (0.564 mmHg, 0 inHg) (Mode D)                                                                                                                  |
| Pressure change in tank every second                                                            | $\leq 0.1$ kPa (0.425 mmHg, 0 inHg)                                                                                                                        |
| Barometric pressure change                                                                      | $-0.5$ kPa (-3.6 mmHg, -0.1 inHg) — $0.3$ kPa (2.4 mmHg, 0.1 inHg) (Mode D)<br>$-0.3$ kPa (-2.4 mmHg, -0.1 inHg) — $0.3$ kPa (2.4 mmHg, 0.1 inHg) (Mode E) |

### Map4

|                                   |                 |                 |                 |                 |                  |               |                 |
|-----------------------------------|-----------------|-----------------|-----------------|-----------------|------------------|---------------|-----------------|
| Fuel level ( ℥ , US gal, Imp gal) | 0               | 10, 2.64, 2.2   | 20, 5.28, 4.4   | 30, 7.93, 6.6   | 40, 10.57, 8.8   | 50, 13.21, 11 | 60, 15.85, 13.2 |
| Change ( ℥ , US gal, Imp gal)     | 4.5, 1.19, 0.99 | 4.5, 1.19, 0.99 | 4.6, 1.22, 1.01 | 4.7, 1.24, 1.03 | 4.85, 1.28, 1.07 | 5, 1.32, 1.1  | 6, 1.59, 1.32   |

## 4. GENERAL DRIVING CYCLE

### 0.04-inch Diagnosis

- Perform the diagnosis only once in 856 seconds or more after starting the engine, at a constant speed of 32 km/h (20 MPH) or more.
- Pay attention to the fuel temperature and fuel level.

### 0.02-inch Diagnosis

- Perform the diagnosis when 125 seconds or more have passed at a constant engine speed of 50 km/h (31 MPH) or higher to judge as NG or OK.
- If judgement cannot be made, repeat the diagnosis.
- Pay attention to the fuel level.

### 5. DIAGNOSTIC METHOD

#### Purge control solenoid valve stuck open fault diagnosis

DTC

P0457 Evaporative Emission Control System Leak Detected (Fuel Cap Loose/Off)

##### Purpose of Mode Z

When performing the leakage diagnosis of EVAP system, the purge control solenoid valve must operate normally. Therefore, mode Z is used to diagnose the purge control solenoid valve stuck open condition. Note that if a purge control solenoid valve stuck open fault is detected, the EVAP system leakage diagnosis is cancelled.

##### DIAGNOSTIC METHOD

Purge control solenoid valve functional diagnosis is performed by monitoring the tank pressure in mode Z.

###### • Abnormality Judgement

If OK judgement cannot be made, extend Mode Z, and Judge as NG when the following conditions are established after predetermined amount of time.

###### Judgement Value

| Malfunction Criteria                                             | Threshold Value                | DTC   |
|------------------------------------------------------------------|--------------------------------|-------|
| evptez – evptezha                                                | > 0.6 kPa (4.5 mmHg, 0.2 inHg) | P0457 |
| evptezini                                                        | ≤ 0.4 kPa (2.9 mmHg, 0.1 inHg) |       |
| Time of 2 ℥ (0.53 US gal, 0.44 Imp gal) or more fuel no sloshing | ≥ 40000 ms                     |       |

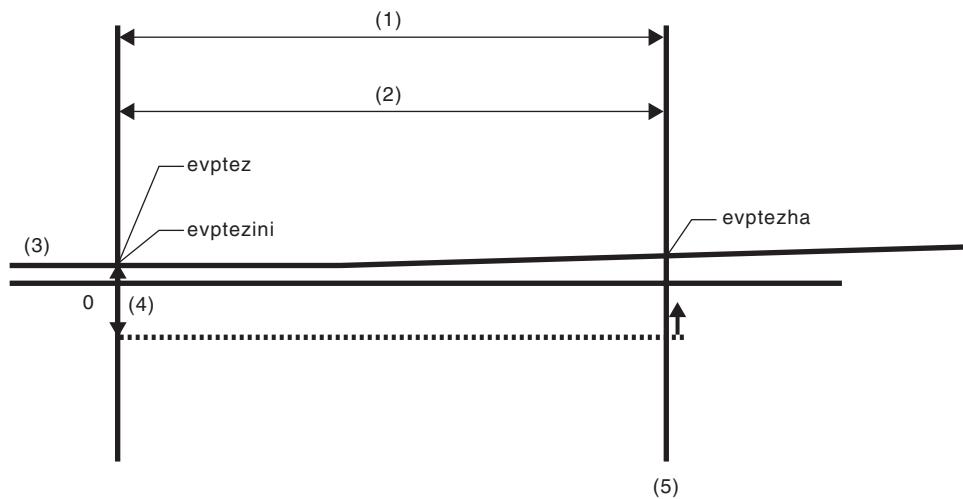
**Time Needed for Diagnosis:** 5000 ms + 3000 ms + 13000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

When judgement for purge control solenoid valve stuck open NG is made, end the evaporative diagnosis. Cancel the evaporative diagnosis when the OK/NG judgement for purge control solenoid valve stuck open cannot be made in Mode Z.

###### • Normality Judgement

Judge as OK and change to Mode A when the following conditions are established after predetermined time has passed since Mode Z started.


###### Judgement Value

| Malfunction Criteria | Threshold Value              | DTC   |
|----------------------|------------------------------|-------|
| evptez – evptezha    | ≤ 0.4 kPa (3 mmHg, 0.1 inHg) | P0457 |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### Normal



EN-02869

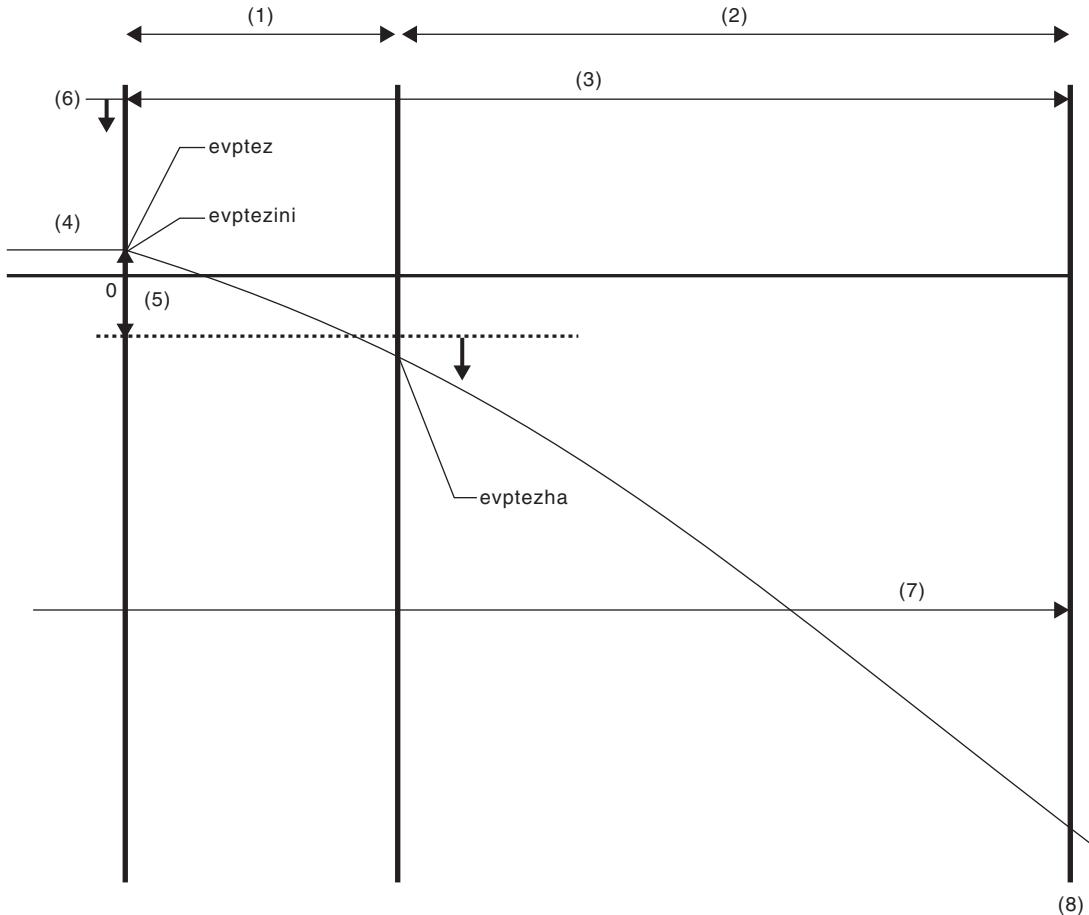
(1) Mode Z

(2) 3000 ms

(3) Fuel tank pressure

(4) 0.4 kPa (3 mmHg, 0.1 inHg)

(5) OK judgement


evptezi – evptezha  $\leq$  0.4 kPa (3 mmHg, 0.1 inHg) Normal when above is established

**Time Needed for Diagnosis:** 5000 ms + 3000 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### Purge control solenoid valve Open Fixation



EN-02870

|                        |                                  |                               |
|------------------------|----------------------------------|-------------------------------|
| (1) Mode Z             | (4) Fuel tank pressure           | (7) 40000 ms no fuel sloshing |
| (2) Extended mode Z    | (5) 0.6 kPa (4.5 mmHg, 0.2 inHg) | (8) NG judgement              |
| (3) 3000 ms + 13000 ms | (6) 0.4 kPa (2.9 mmHg, 0.1 inHg) |                               |

- $evptezini \leq 0.4 \text{ kPa}$  (2.9 mmHg, 0.1 inHg)
- $evptez - evptezha > 0.6 \text{ kPa}$  (4.5 mmHg, 0.2 inHg)
- No fuel sloshing of over 2  $\ell$  (0.53 US gal, 0.44 Imp gal) lasts for more than 40000 ms. Judge as abnormal when all are established.

### Leak Diagnosis

#### DTC

P0442 Evaporative Emission Control System Leak Detected (Small Leak)

P0457 Evaporative Emission Control System Leak Detected (Fuel Cap Loose/Off)

- The diagnostic consists of creating a sealed vacuum in the fuel tank and then determining the presence of leakage from the speed at which the tank internal pressure returns to barometric pressure.
- The diagnosis is divided into the following five phases.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### Mode A: (Estimated evaporation gas amount)

Calculate the tank pressure change amount (P1) when using mode A. After calculating P1, switch to mode B.

### Mode B: (Negative pressure sealed)

Introduce negative pressure in the intake manifold to the tank.

Approx. 0 → -1.4 kPa (0 → -10.5 mmHg, 0 → -0.4 inHg)

When the pressure above (desired negative pressure) is reached, enters Mode C.

In this case, if the tank pressure does not reach the target negative pressure, judge that there is a large leakage in the system and terminate the evaporative emission control system diagnosis.

### Abnormality Judgement

Judge as NG (large leakage) when the following conditions are established.

### Judgement Value

| Malfunction Criteria                                                                                                                              | Threshold Value                                                        | DTC   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|
| Time to reach target negative pressure<br>or<br>Mode B time<br>(Min. pressure value in tank when in mode B) – (Tank pressure when mode B started) | ≥ 10000 ms + 25000 ms<br>≥ 10000 ms<br>> -0.5 kPa (-4 mmHg, -0.2 inHg) | P0457 |
|                                                                                                                                                   |                                                                        |       |

**Time Needed for Diagnosis:** 5000 ms + 3000 ms + 10000 ms + 10000 ms + 25000 ms

### Mode C: (Check pressure rise)

Stop the introduction of negative pressure. (Wait until the tank pressure returns to the start level of P2 calculation.)

Change to Mode D when the tank pressure returns to the start level of P2 calculation.

Judge immediate OK and change to Mode E when it does not return in spite of spending the specified time.

| Tank pressure when starting calculation of P2 | Time for advanced OK judgement |
|-----------------------------------------------|--------------------------------|
| -1.3 kPa (-9.75 mmHg, -0.4 inHg)              | 14000 ms                       |

**Time Needed for Diagnosis:** 5000 ms + 3000 ms + 10000 ms + 10000 ms + 25000 ms + 14000 ms

### Mode D: (Measure amount of negative pressure change)

Monitor the tank pressure change amount when using mode D. In this case, the tank pressure increases, (nears barometric pressure) because evaporation occurs. However, if any leakage exists, the pressure increases additionally in proportion to this leakage. The pressure variation of this tank is P2.

After calculating P2, perform a small leak diagnosis according to the items below.

### When Mode D is ended

Assign tank variations measured in Mode A and Mode D, P1 and P2, to the formula below, judge small leaks in the system. If the measured judgement value exceeds the threshold value, it is judged to be a malfunction.

### Abnormality Judgement

Judge as NG when the following conditions are established within the predetermined time. Judge as OK and clear the NG if the following conditions are not established within the predetermined time.

### Judgement Value

| Malfunction Criteria                                                                                                                  | Threshold Value  | DTC   |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|
| P2 – 1.5 – × P1<br>P2: Tank pressure that changes every 10000 ms in mode D<br>P1: Tank pressure that changes every 10000 ms in mode A | > Value of Map 5 | P0442 |

\*1.5 –: Evaporation amount compensation value when below negative pressure (Amount of evaporation occurrence increases as a vacuum condition increases.)

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### Map 5 Malfunction Criteria limit for evaporation diagnosis

| Fuel temperature vs. Fuel level   | 25 °C (77 °F)                      | 30 °C (86 °F)                       | 35 °C (95 °F)                       | 40 °C (104 °F)                      | 45 °C (113 °F)                      |
|-----------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 0 ℥ (0 US gal, 0 Imp gal)         | 0.3 kPa<br>(2.1 mmHg,<br>0.1 inHg) | 0.3 kPa<br>(2.2 mmHg,<br>0.1 inHg)  | 0.3 kPa<br>(2.3 mmHg,<br>0.1 inHg)  | 0.3 kPa<br>(2.35 mmHg,<br>0.1 inHg) | 0.3 kPa<br>(2.4 mmHg,<br>0.1 inHg)  |
| 10 ℥ (2.64 US gal, 2.2 Imp gal)   | 0.3 kPa<br>(2.1 mmHg,<br>0.1 inHg) | 0.3 kPa<br>(2.2 mmHg,<br>0.1 inHg)  | 0.3 kPa<br>(2.3 mmHg,<br>0.1 inHg)  | 0.3 kPa<br>(2.35 mmHg,<br>0.1 inHg) | 0.3 kPa<br>(2.4 mmHg,<br>0.1 inHg)  |
| 20 ℥ (5.28 US gal, 4.4 Imp gal)   | 0.3 kPa<br>(2.3 mmHg,<br>0.1 inHg) | 0.3 kPa<br>(2.4 mmHg,<br>0.1 inHg)  | 0.3 kPa<br>(2.5 mmHg,<br>0.1 inHg)  | 0.3 kPa<br>(2.6 mmHg,<br>0.1 inHg)  | 0.4 kPa<br>(2.7 mmHg,<br>0.1 inHg)  |
| 30 ℥ (7.93 US gal, 6.6 Imp gal)   | 0.4 kPa<br>(2.9 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.05 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.15 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.25 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.35 mmHg,<br>0.1 inHg) |
| 40 ℥ (10.57 US gal, 8.8 Imp gal)  | 0.4 kPa<br>(2.9 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.15 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.3 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.4 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.5 mmHg,<br>0.1 inHg)  |
| 50 ℥ (13.21 US gal, 11 Imp gal)   | 0.4 kPa<br>(3.2 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.3 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.5 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.6 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.7 mmHg,<br>0.1 inHg)  |
| 60 ℥ (15.85 US gal, 13.2 Imp gal) | 0.4 kPa<br>(3.2 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.3 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.5 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.6 mmHg,<br>0.1 inHg)  | 0.5 kPa<br>(3.7 mmHg,<br>0.1 inHg)  |

**Time Needed for Diagnosis:** 5000 ms + 3000 ms + 10000 ms + 10000 ms + 25000 ms + 14000 ms + 10000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

### Leak Diagnosis

#### DTC

P0456 Evaporative Emission Control System Leak Detected (very small leak)

- The diagnostic consists of creating a sealed vacuum in the fuel tank and then determining the presence of leakage from the speed at which the tank internal pressure returns to barometric pressure.
- The diagnosis is divided into the following five phases.

#### Mode A: (0 point compensation)

When the pressure in the tank is not near 0 mmHg, wait until it returns to 0 point (near 0 mmHg). Shift to mode B when returned to the 0 point. Cancel the diagnosis when 0 point does not return in the specified time.

#### Mode B: (Negative pressure introduced)

Introduce negative pressure in the intake manifold to the tank.

Approx. 0 → -2 kPa (0 → -15 mmHg, 0 → -0.6 inHg)

When the pressure above (desired negative pressure) is reached, enters Mode C.

When the tank internal pressure does not reach the target negative pressure, the diagnosis is cancelled.

#### Mode C: (Negative pressure maintained)

Stop the introduction of negative pressure. (Wait until the tank pressure returns to the start level of P2 calculation.)

Change to Mode D either when the tank pressure returns to the start level of P2 calculation, or when the pre-determined amount of time has passed.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### Mode D: (Calculate the amount of negative pressure change)

Monitor the tank pressure in mode D, calculate the pressure change in the tank (P2), and measure the time (evpdset) for the tank pressure to change to the Mode E shifting pressure. When the Mode E shifting pressure is reached, Mode E is entered. If it does not change to the Mode E shifting pressure after the predetermined amount of time has passed, make advanced OK judgement or cancel the diagnosis according to the value of P2.

#### Normality Judgement

Judge as OK when the following conditions are established.

#### Judgement Value

| Malfunction Criteria           | Threshold Value                         |
|--------------------------------|-----------------------------------------|
| <b>Advanced OK judgement 1</b> |                                         |
| Mode D time                    | $\geq 0 \text{ ms} + 20000 \text{ ms}$  |
| Tank internal pressure         | $\leq \text{Value of Map 6}$            |
| <b>Advanced OK judgement 2</b> |                                         |
| Mode D time                    | $\geq 0 \text{ ms} + 200000 \text{ ms}$ |
| P2                             | $\leq \text{Value of Map 7}$            |

#### Map6

|                                        |                   |                   |                   |                   |                   |                   |                   |
|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Fuel level ( $\ell$ , US gal, Imp gal) | 0, 0, 0           | 10, 2.64, 2.2     | 20, 5.28, 4.4     | 30, 7.93, 6.6     | 40, 10.57, 8.8    | 50, 13.21, 11     | 60, 15.85, 13.2   |
| Tank pressure (kPa, mmHg, inHg)        | -1.9, -13.9, -0.5 | -1.9, -13.9, -0.5 | -1.8, -13.8, -0.5 | -1.8, -13.7, -0.5 | -1.8, -13.6, -0.5 | -1.8, -13.5, -0.5 | -1.8, -13.5, -0.5 |

#### Map7

|                                        |             |               |                |               |                |               |                 |
|----------------------------------------|-------------|---------------|----------------|---------------|----------------|---------------|-----------------|
| Fuel level ( $\ell$ , US gal, Imp gal) | 0, 0, 0     | 10, 2.64, 2.2 | 20, 5.28, 4.4  | 30, 7.93, 6.6 | 40, 10.57, 8.8 | 50, 13.21, 11 | 60, 15.85, 13.2 |
| Tank pressure (kPa, mmHg, inHg)        | 0.9, 7, 0.3 | 0.9, 7, 0.3   | 0.9, 7.05, 0.3 | 0.9, 7.1, 0.3 | 1.1, 8.2, 0.3  | 1.3, 9.6, 0.4 | 1.3, 9.6, 0.4   |

### Mode E: (Evaporation occurrence amount calculation)

Calculate the change of tank pressure with the time evpdset (P1) to judge as NG/OK according to the value of P1. (ambiguous determination acceptable).

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

- Abnormality Judgement**

Judge as NG when the following conditions are established.

### Judgement Value

| Malfunction Criteria | Threshold Value  |
|----------------------|------------------|
| P1                   | < Value of Map 8 |

### Map 8 Malfunction Criteria limit for evaporation diagnosis

| Time (evpdset) vs. Fuel level     | 0 ms                      | 50000 ms                          | 65000 ms                          | 120000 ms                         | 150000 ms                         | 200000 ms                         |
|-----------------------------------|---------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 0 ℥ (0 US gal, 0 Imp gal)         | 0 kPa<br>(0 mmHg, 0 inHg) | 0.2 kPa<br>(1.4 mmHg, 0.1 inHg)   | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  |
| 10 ℥ (2.64 US gal, 2.2 Imp gal)   | 0 kPa<br>(0 mmHg, 0 inHg) | 0.2 kPa<br>(1.4 mmHg, 0.1 inHg)   | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.84 mmHg, 0.1 inHg)  |
| 20 ℥ (5.28 US gal, 4.4 Imp gal)   | 0 kPa<br>(0 mmHg, 0 inHg) | 0.2 kPa<br>(1.54 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.76 mmHg, 0.1 inHg)  |
| 30 ℥ (7.93 US gal, 6.6 Imp gal)   | 0 kPa<br>(0 mmHg, 0 inHg) | 0.2 kPa<br>(1.68 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.68 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.68 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.68 mmHg, 0.1 inHg)  | 0.2 kPa<br>(1.68 mmHg, 0.1 inHg)  |
| 40 ℥ (10.57 US gal, 8.8 Imp gal)  | 0 kPa<br>(0 mmHg, 0 inHg) | 0.2 kPa<br>(1.315 mmHg, 0.1 inHg) |
| 50 ℥ (13.21 US gal, 11 Imp gal)   | 0 kPa<br>(0 mmHg, 0 inHg) | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0 kPa (0 mmHg, 0 inHg)            |
| 60 ℥ (15.85 US gal, 13.2 Imp gal) | 0 kPa<br>(0 mmHg, 0 inHg) | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0.1 kPa<br>(0.95 mmHg, 0 inHg)    | 0 kPa (0 mmHg, 0 inHg)            |

**Time Needed for Diagnosis:** Value of Map1 + Value of Map2 + 20000 ms + 0 + Value of Map2 + 0 ms + 200000 ms + Value of Map3 + 0 ms + 200000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### • Normality Judgement

Judge as OK when the following conditions are established.

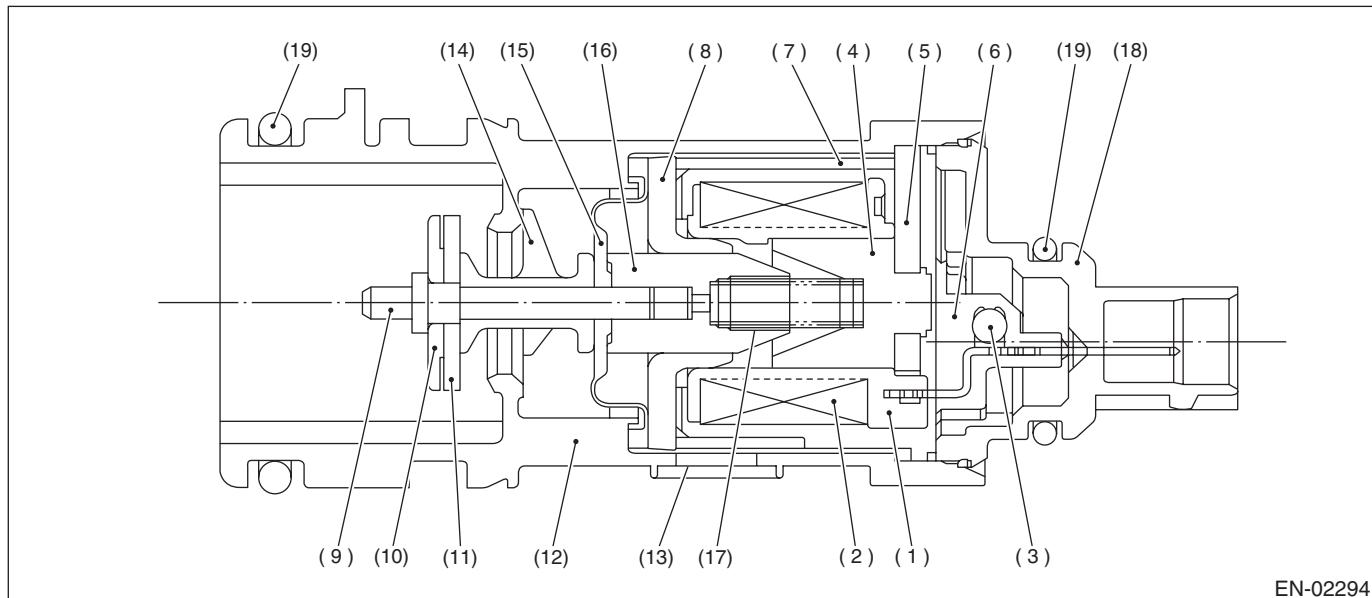
#### Judgement Value

| Malfunction Criteria | Threshold Value  |
|----------------------|------------------|
| P1                   | > Value of Map 9 |

#### Map 9 Malfunction Criteria limit for evaporation diagnosis

| Time (evpdset) vs. Fuel level     | 0 ms                           | 50000 ms                            | 65000 ms                            | 120000 ms                           | 150000 ms                           | 200000 ms                           |
|-----------------------------------|--------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 0 ℥ (0 US gal, 0 Imp gal)         | 0.1 kPa<br>(1 mmHg,<br>0 inHg) | 0.4 kPa<br>(2.88 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.28 mmHg,<br>0.1 inHg) |
| 10 ℥ (2.64 US gal, 2.2 Imp gal)   | 0.1 kPa<br>(1 mmHg,<br>0 inHg) | 0.4 kPa<br>(2.88 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.28 mmHg,<br>0.1 inHg) |
| 20 ℥ (5.28 US gal, 4.4 Imp gal)   | 0.1 kPa<br>(1 mmHg,<br>0 inHg) | 0.4 kPa<br>(2.91 mmHg,<br>0.1 inHg) | 0.4 kPa<br>(3.11 mmHg,<br>0.1 inHg) |
| 30 ℥ (7.93 US gal, 6.6 Imp gal)   | 0.1 kPa<br>(1 mmHg,<br>0 inHg) | 0.4 kPa<br>(2.93 mmHg,<br>0.1 inHg) |
| 40 ℥ (10.57 US gal, 8.8 Imp gal)  | 0.1 kPa<br>(1 mmHg,<br>0 inHg) | 0.4 kPa<br>(2.76 mmHg,<br>0.1 inHg) |
| 50 ℥ (13.21 US gal, 11 Imp gal)   | 0.1 kPa<br>(1 mmHg,<br>0 inHg) | 0.3 kPa<br>(2.58 mmHg,<br>0.1 inHg) | 0.2 kPa<br>(1.3 mmHg,<br>0.1 inHg)  |
| 60 ℥ (15.85 US gal, 13.2 Imp gal) | 0.1 kPa<br>(1 mmHg,<br>0 inHg) | 0.3 kPa<br>(2.58 mmHg,<br>0.1 inHg) | 0.2 kPa<br>(1.3 mmHg,<br>0.1 inHg)  |

**Time Needed for Diagnosis:** Value of Map1 + Value of Map2 + 20000 ms + 0 + Value of Map2 + 0 ms + 200000 ms + Value of Map3 + 0 ms + 200000 ms


### CE:DTC P0447 EVAPORATIVE EMISSION CONTROL SYSTEM VENT CONTROL CIRCUIT OPEN

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of the drain valve.

Judge as NG when the ECM output level differs from the actual terminal level.

#### 2. COMPONENT DESCRIPTION



|                 |                    |                   |
|-----------------|--------------------|-------------------|
| (1) Bobbin      | (8) Magnetic plate | (14) Retainer     |
| (2) Coil        | (9) Shaft          | (15) Diaphragm    |
| (3) Diode       | (10) Plate         | (16) Movable core |
| (4) Stator core | (11) Valve         | (17) Spring       |
| (5) End plate   | (12) Housing       | (18) Cover        |
| (6) Body        | (13) Filter        | (19) O-ring       |
| (7) Yoke        |                    |                   |

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                | Threshold Value |
|-----------------------------------------------------|-----------------|
| Battery voltage                                     | $\geq 10.9$ V   |
| Elapsed time after starting the engine              | $\geq 1$ second |
| Terminal output voltage when ECM outputs OFF signal | Low             |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

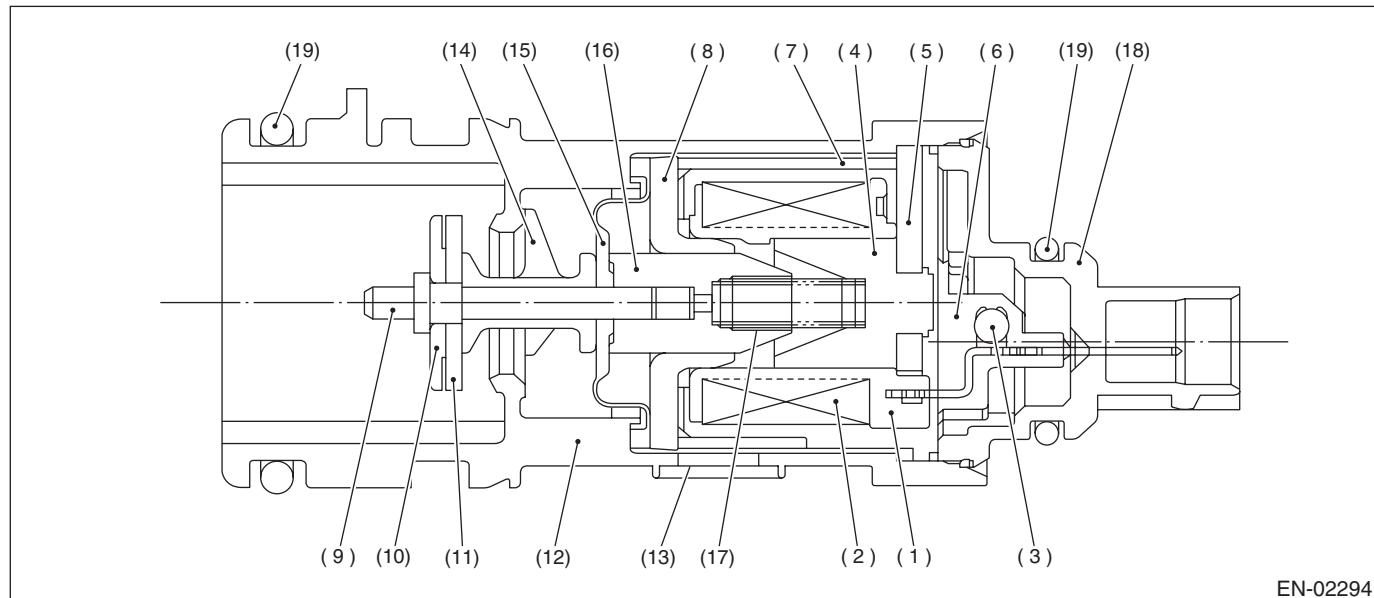
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                                | Threshold Value |
|-----------------------------------------------------|-----------------|
| Battery voltage                                     | $\geq 10.9$ V   |
| Elapsed time after starting the engine              | $\geq 1$ second |
| Terminal output voltage when ECM outputs OFF signal | High            |

**Time Needed for Diagnosis:** Less than 1 second


### CF:DTC P0448 EVAPORATIVE EMISSION CONTROL SYSTEM VENT CONTROL CIRCUIT SHORTED

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of the drain valve.

Judge as NG when the ECM output level differs from the actual terminal level.

#### 2. COMPONENT DESCRIPTION



|                 |                    |                   |
|-----------------|--------------------|-------------------|
| (1) Bobbin      | (8) Magnetic plate | (14) Retainer     |
| (2) Coil        | (9) Shaft          | (15) Diaphragm    |
| (3) Diode       | (10) Plate         | (16) Movable core |
| (4) Stator core | (11) Valve         | (17) Spring       |
| (5) End plate   | (12) Housing       | (18) Cover        |
| (6) Body        | (13) Filter        | (19) O-ring       |
| (7) Yoke        |                    |                   |

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Battery voltage                                    | $\geq 10.9$ V   |
| Elapsed time after starting the engine             | $\geq 1$ second |
| Terminal output voltage when ECM outputs ON signal | High            |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

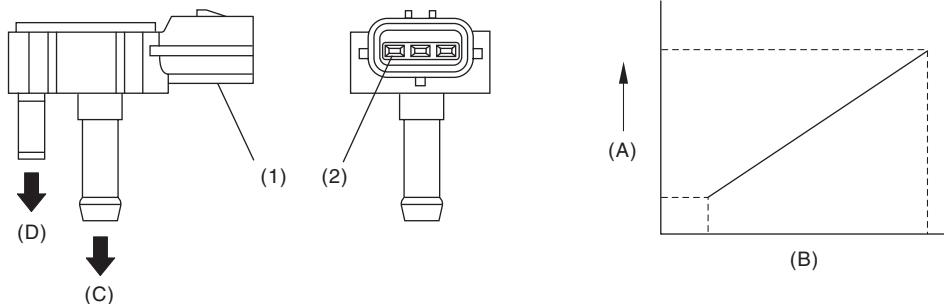
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Battery voltage                                    | $\geq 10.9$ V   |
| Elapsed time after starting the engine             | $\geq 1$ second |
| Terminal output voltage when ECM outputs ON signal | Low             |

**Time Needed for Diagnosis:** Less than 1 second


### CG:DTC P0451 EVAPORATIVE EMISSION CONTROL SYSTEM PRESSURE SENSOR

#### 1. OUTLINE OF DIAGNOSIS

Detect the tank pressure sensor output property abnormality.

Judge as NG when there is no pressure variation, which should exist in the tank, considering the engine status.

#### 2. COMPONENT DESCRIPTION



EN-03141

(A) Output voltage (C) To fuel tank (D) To atmosphere  
(B) Input voltage  
(1) Connector (2) Terminals

#### 3. ENABLE CONDITION

| Secondary Parameters                   | Enable Conditions                        |
|----------------------------------------|------------------------------------------|
| Elapsed time after starting the engine | $\geq 60$ s                              |
| Fuel level                             | $\geq 9.6$ l (2.54 US gal, 2.11 Imp gal) |
| Fuel temperature                       | $< 35$ °C (95 °F)                        |
| Battery voltage                        | $\geq 10.9$ V                            |
| Barometric pressure                    | $\geq 75$ kPa (563 mmHg, 22.2 inHg)      |

#### 4. GENERAL DRIVING CYCLE

- Perform the diagnosis continuously after 60 s have passed since the engine started.
- Pay attention to the fuel level and temperature.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                                                                                                                                                     | Threshold Value              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Continuous time of 10000 ms or more with purge ON                                                                                                                                        | Experienced                  |
| Continuous time of 10000 ms or more with purge OFF                                                                                                                                       | Experienced                  |
| Number of times that the difference between the Max. fuel level every 60 s and Min. fuel level every 60 s is 2 ℥ (0.53 US gal, 0.44 Imp gal) or more (with enable condition established) | ≥ 16 time(s)                 |
| Maximum – Minimum tank pressure (with enable condition completed)                                                                                                                        | < 0 kPa (0.375 mmHg, 0 inHg) |
| Maximum – Minimum fuel temperature (with enable condition completed)                                                                                                                     | ≥ 7 °C (44.6 °F)             |

If the difference between the Max. fuel level every 60 s and Min. fuel level every 60 s is less than 2 ℥ (0.53 US gal, 0.44 Imp gal), extend 60 s and make judgement with the Max. and Min. values for the fuel level in 60 s × 2. If a difference does not appear, extend the time (60 s × 3, 60 s × 4, 60 s × 5) and continue the judgement. If the difference between the Max. fuel level every 60 s and Min. fuel level every 60 s is 2 ℥ (0.53 US gal, 0.44 Imp gal) or more, the diagnosis counter counts up.

**Time Needed for Diagnosis:** 60 s × 16 time(s) or more

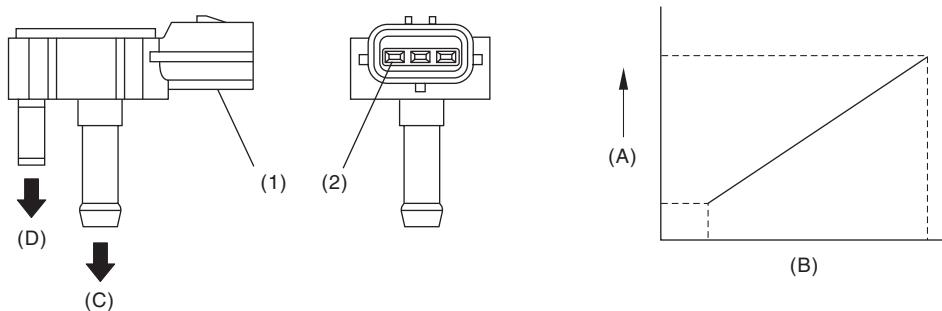
**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria            | Threshold Value              |
|---------------------------------|------------------------------|
| Maximum – Minimum tank pressure | ≥ 0 kPa (0.375 mmHg, 0 inHg) |


**Time Needed for Diagnosis:** Less than 1 second

### CH:DTC P0452 EVAPORATIVE EMISSION CONTROL SYSTEM PRESSURE SENSOR LOW INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the fuel tank pressure sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-03141

(A) Output voltage  
(B) Input voltage

(C) To fuel tank

(D) To atmosphere

(1) Connector

(2) Terminals

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value                    |
|----------------------|------------------------------------|
| Fuel tank pressure   | < -7.4 kPa (-55.6 mmHg, -2.2 inHg) |
| Battery voltage      | ≥ 10.9 V                           |

**Time Needed for Diagnosis:** 15000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value                    |
|----------------------|------------------------------------|
| Fuel tank pressure   | ≥ -7.4 kPa (-55.6 mmHg, -2.2 inHg) |
| Battery voltage      | ≥ 10.9 V                           |


**Time Needed for Diagnosis:** Less than 1 second

### CI: DTC P0453 EVAPORATIVE EMISSION CONTROL SYSTEM PRESSURE SENSOR HIGH INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of the fuel tank pressure sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-03141

(A) Output voltage  
(B) Input voltage

(C) To fuel tank

(D) To atmosphere

(1) Connector

(2) Terminals

#### 3. ENABLE CONDITION

| Secondary Parameters                                                | Enable Conditions       |
|---------------------------------------------------------------------|-------------------------|
| Time needed for all secondary parameters to be in enable conditions | $\geq 5000$ ms          |
| Vehicle speed                                                       | $\geq 2$ km/h (1.2 MPH) |
| All conditions of EVAP canister purge                               | Completed               |
| Learning value of evaporation gas concentration (left and right)    | $< 0.08$                |
| Main feedback compensation coefficient (left and right)             | $\geq 0.9$              |
| Battery voltage                                                     | $\geq 10.9$ V           |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis when purging enable conditions are met without idling.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value                 |
|----------------------|---------------------------------|
| Fuel tank pressure   | ≥ 7.9 kPa (59.6 mmHg, 2.3 inHg) |
| Fuel temperature     | < 35 °C (95 °F)                 |
| Barometric pressure  | ≥ 75 kPa (563 mmHg, 22.2 inHg)  |

**Time Needed for Diagnosis:** 15000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value                 |
|----------------------|---------------------------------|
| Fuel tank pressure   | < 7.9 kPa (59.6 mmHg, 2.3 inHg) |

**Time Needed for Diagnosis:** Less than 1 second

## **CJ:DTC P0456 EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (VERY SMALL LEAK)**

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

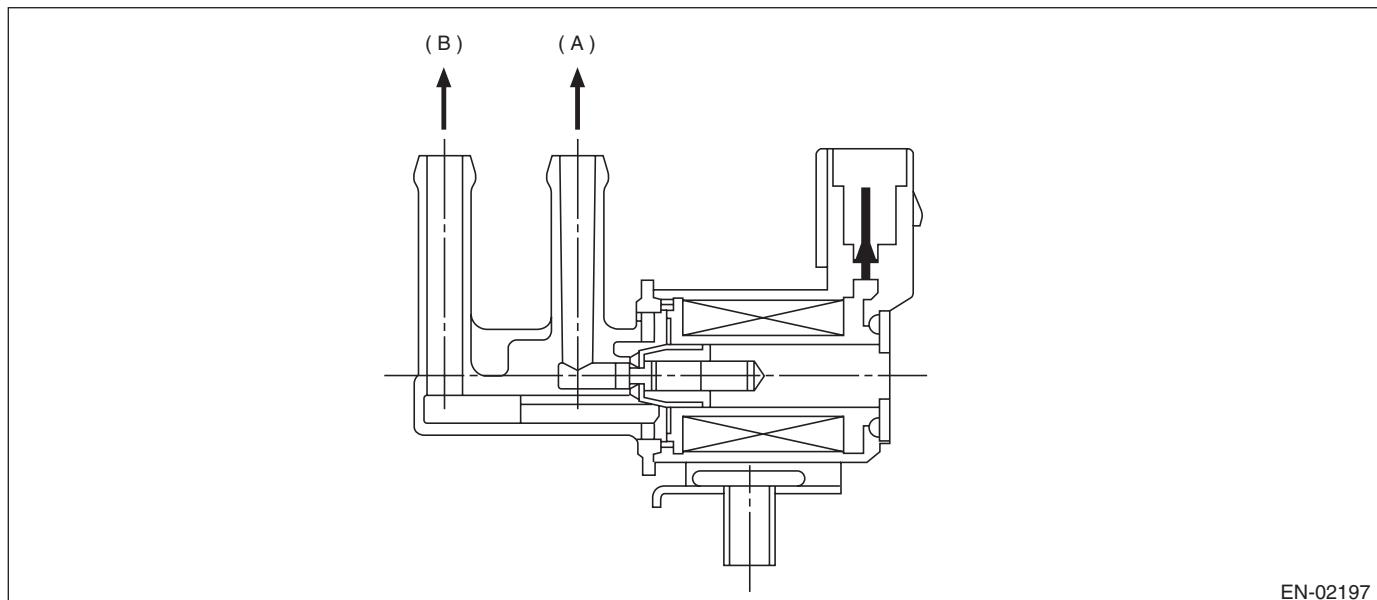
For the detection standard, refer to DTC P0442. <Ref. to GD(H6DO)-111, DTC P0442 EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (SMALL LEAK), Diagnostic Trouble Code (DTC) Detecting Criteria.>

## **CK:DTC P0457 EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (FUEL CAP LOOSE/OFF)**

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:

For the detection standard, refer to DTC P0442. <Ref. to GD(H6DO)-111, DTC P0442 EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (SMALL LEAK), Diagnostic Trouble Code (DTC) Detecting Criteria.>


### CL:DTC P0458 EVAPORATIVE EMISSION SYSTEM PURGE CONTROL VALVE CIRCUIT LOW

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of the purge control solenoid valve.

Judge as NG when the ECM output level differs from the actual terminal level.

#### 2. COMPONENT DESCRIPTION



(A) To canister

(B) To intake manifold

EN-02197

#### 3. ENABLE CONDITION

| Secondary Parameters                   | Enable Conditions |
|----------------------------------------|-------------------|
| Battery voltage                        | $\geq 10.9$ V     |
| Elapsed time after starting the engine | $\geq 1$ second   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis after starting the engine.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria    | Threshold Value |
|-------------------------|-----------------|
| Duty ratio of "ON"      | < 0.75          |
| Terminal output voltage | Low             |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

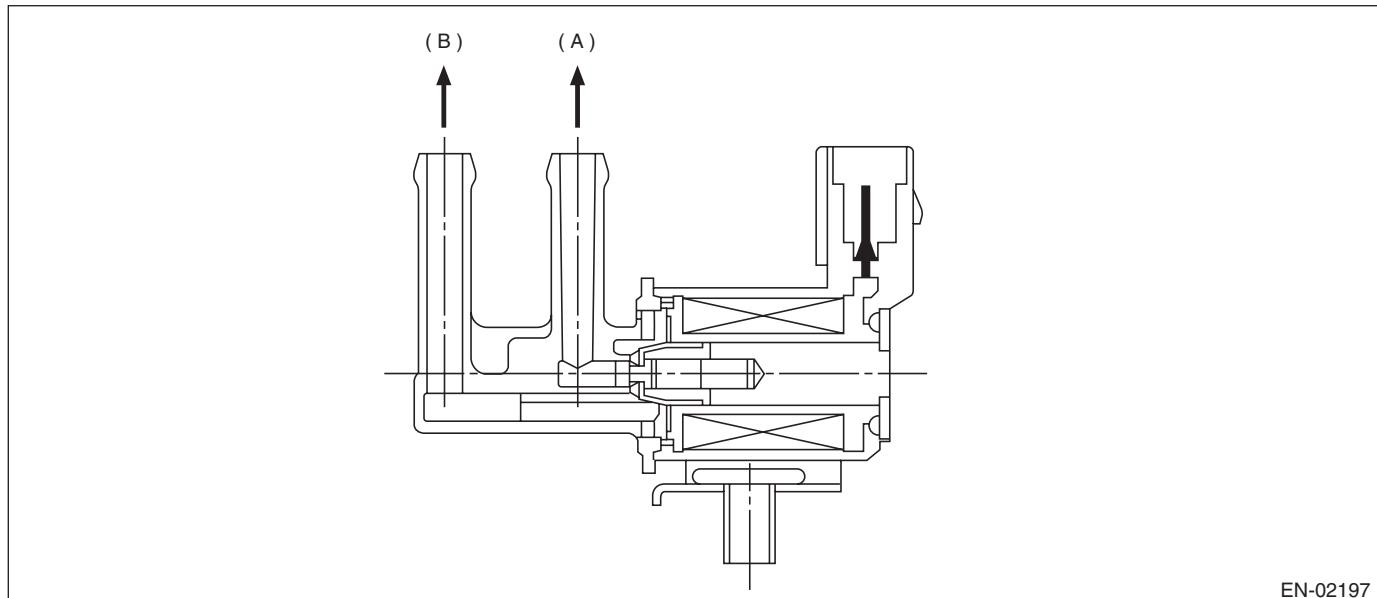
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria    | Threshold Value |
|-------------------------|-----------------|
| Terminal output voltage | High            |

**Time Needed for Diagnosis:** Less than 1 second


### CM:DTC P0459 EVAPORATIVE EMISSION SYSTEM PURGE CONTROL VALVE CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of the purge control solenoid valve.

Judge as NG when the ECM output level differs from the actual terminal level.

#### 2. COMPONENT DESCRIPTION



(A) To canister

(B) To intake manifold

#### 3. ENABLE CONDITION

| Secondary Parameters                   | Enable Conditions |
|----------------------------------------|-------------------|
| Battery voltage                        | $\geq 10.9$ V     |
| Elapsed time after starting the engine | $\geq 1$ second   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis after starting the engine.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria    | Threshold Value |
|-------------------------|-----------------|
| Duty ratio of "ON"      | $\geq 0.25$     |
| Terminal output voltage | High            |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

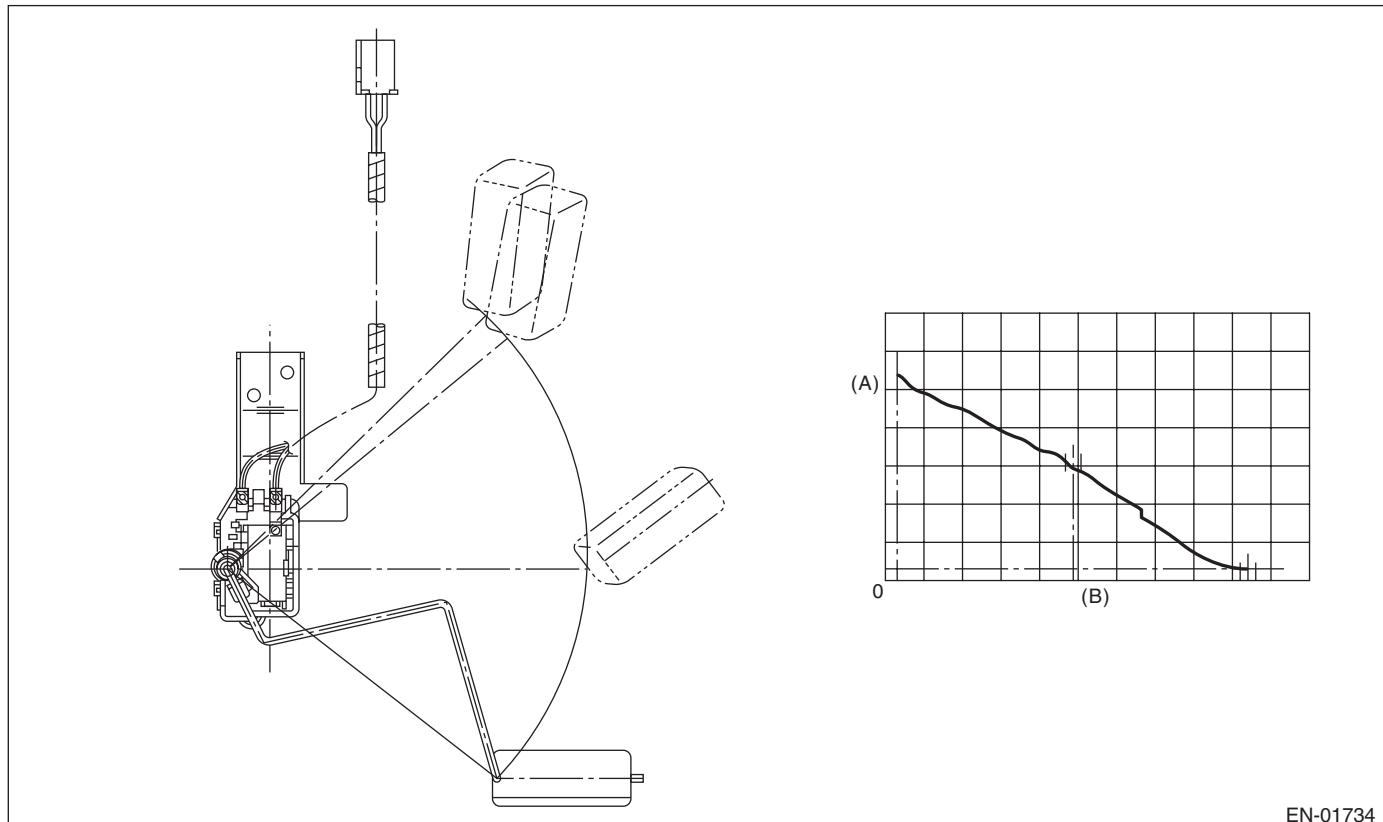
#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria    | Threshold Value |
|-------------------------|-----------------|
| Terminal output voltage | Low             |

**Time Needed for Diagnosis:** Less than 1 second


### CN:DTC P0461 FUEL LEVEL SENSOR “A” CIRCUIT RANGE/PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Detect malfunctions of the fuel level sensor output property.

If the fuel level does not vary in a particular driving condition / engine condition where it should, judge as NG.

#### 2. COMPONENT DESCRIPTION



(A) Fuel level

(B) Resistance

EN-01734

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

#### Judgement Value

| Malfunction Criteria                    | Threshold Value                               |
|-----------------------------------------|-----------------------------------------------|
| Accumulated amount of intake air        | $\geq 330957 \text{ g (11672.85 oz)}$         |
| Max. – min. values of fuel level output | $< 2.6 \text{ l (0.69 US gal, 0.57 Imp gal)}$ |
| Battery voltage                         | $\geq 10.9 \text{ V}$                         |
| Engine speed                            | $< 7000 \text{ rpm}$                          |
| Elapsed time after starting the engine  | $\geq 5000 \text{ ms}$                        |

**Time Needed for Diagnosis:** Less than 1 second

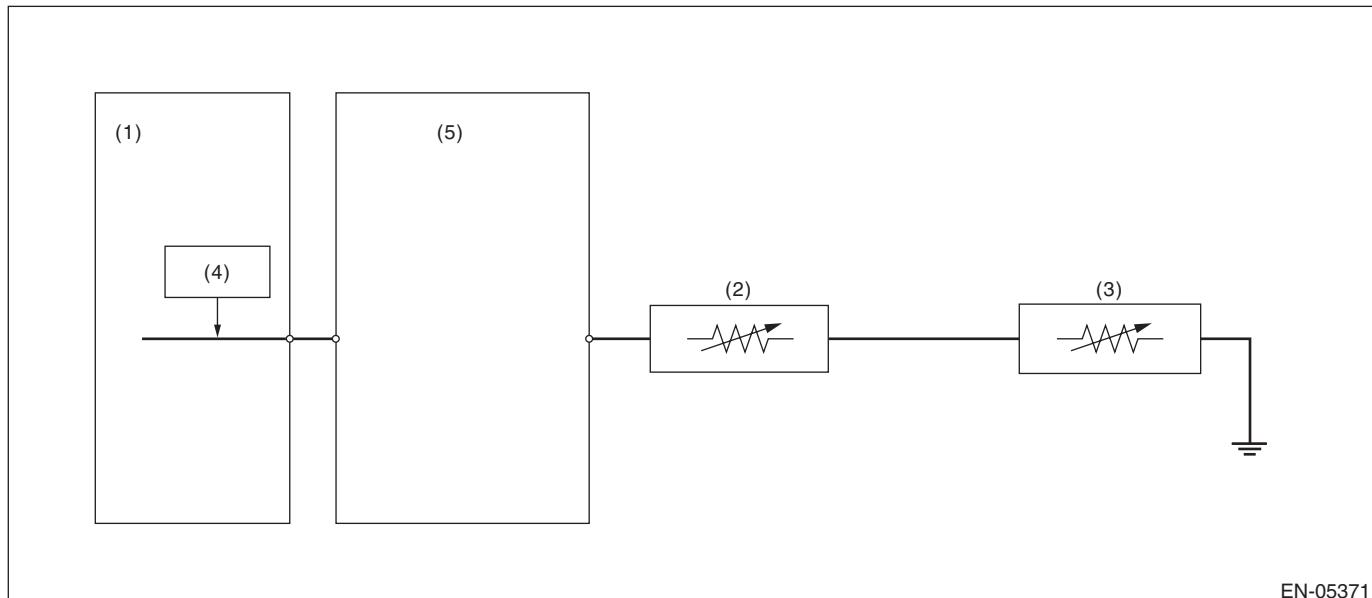
**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the following conditions are established.

#### Judgement Value

| Malfunction Criteria                    | Threshold Value                                  |
|-----------------------------------------|--------------------------------------------------|
| Accumulated amount of intake air        | $\geq 330957 \text{ g (11672.85 oz)}$            |
| Max. – min. values of fuel level output | $\geq 2.6 \text{ l (0.69 US gal, 0.57 Imp gal)}$ |
| Battery voltage                         | $\geq 10.9 \text{ V}$                            |
| Engine speed                            | $< 7000 \text{ rpm}$                             |
| Elapsed time after starting the engine  | $\geq 5000 \text{ ms}$                           |


**Time Needed for Diagnosis:** Less than 1 second

### CO:DTC P0462 FUEL LEVEL SENSOR “A” CIRCUIT LOW

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of fuel level sensor. Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



(1) Engine control module (ECM)

(2) Fuel level sensor

(3) Fuel sub level sensor

(4) Detecting circuit

(5) Body integrated unit

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                   | Threshold Value        |
|----------------------------------------|------------------------|
| Battery voltage                        | $\geq 10.9 \text{ V}$  |
| Elapsed time after starting the engine | $\geq 3000 \text{ ms}$ |
| Output voltage                         | $< 0.173 \text{ V}$    |

**Time Needed for Diagnosis:** 2500 ms

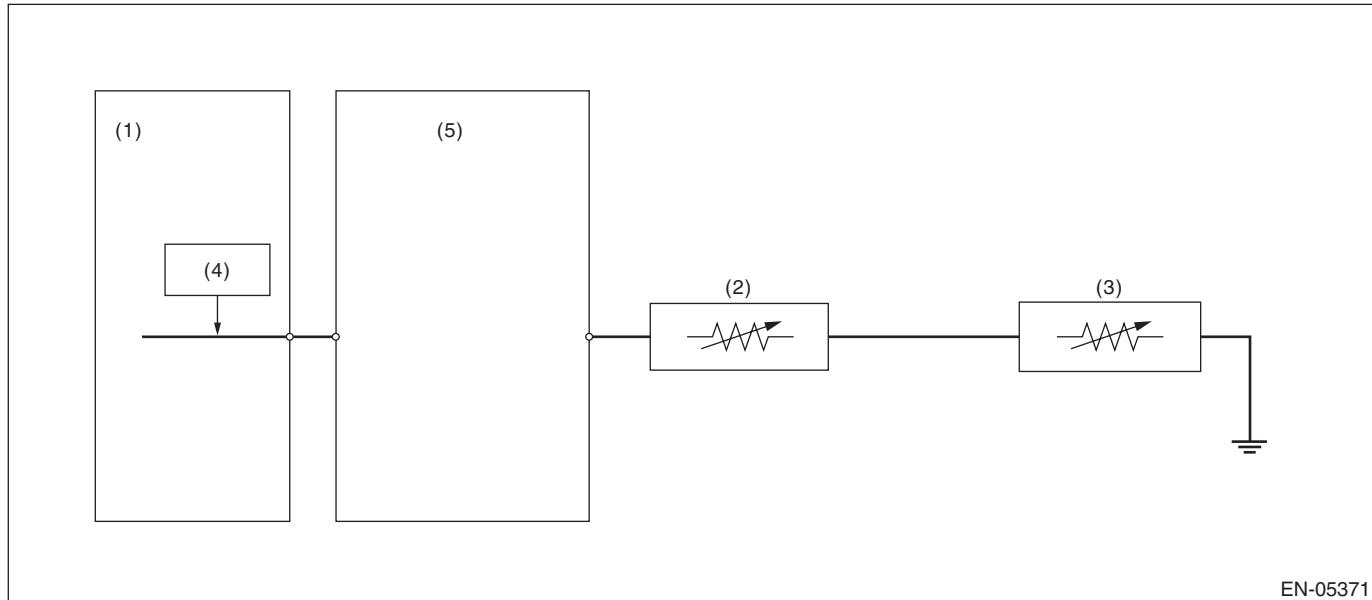
**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                   | Threshold Value        |
|----------------------------------------|------------------------|
| Battery voltage                        | $\geq 10.9 \text{ V}$  |
| Elapsed time after starting the engine | $\geq 3000 \text{ ms}$ |
| Output voltage                         | $\geq 0.173 \text{ V}$ |


**Time Needed for Diagnosis:** Less than 1 second

### CP:DTC P0463 FUEL LEVEL SENSOR “A” CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of fuel level sensor. Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



(1) Engine control module (ECM)

(2) Fuel level sensor

(3) Fuel sub level sensor

(4) Detecting circuit

(5) Body integrated unit

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                   | Threshold Value |
|----------------------------------------|-----------------|
| Battery voltage                        | $\geq 10.9$ V   |
| Elapsed time after starting the engine | $\geq 3000$ ms  |
| Output voltage                         | $\geq 7.212$ V  |

**Time Needed for Diagnosis:** 1000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                   | Threshold Value |
|----------------------------------------|-----------------|
| Battery voltage                        | $\geq 10.9$ V   |
| Elapsed time after starting the engine | $\geq 3000$ ms  |
| Output voltage                         | $< 7.212$ V     |

**Time Needed for Diagnosis:** Less than 1 second

## CQ:DTC P0464 FUEL LEVEL SENSOR CIRCUIT INTERMITTENT

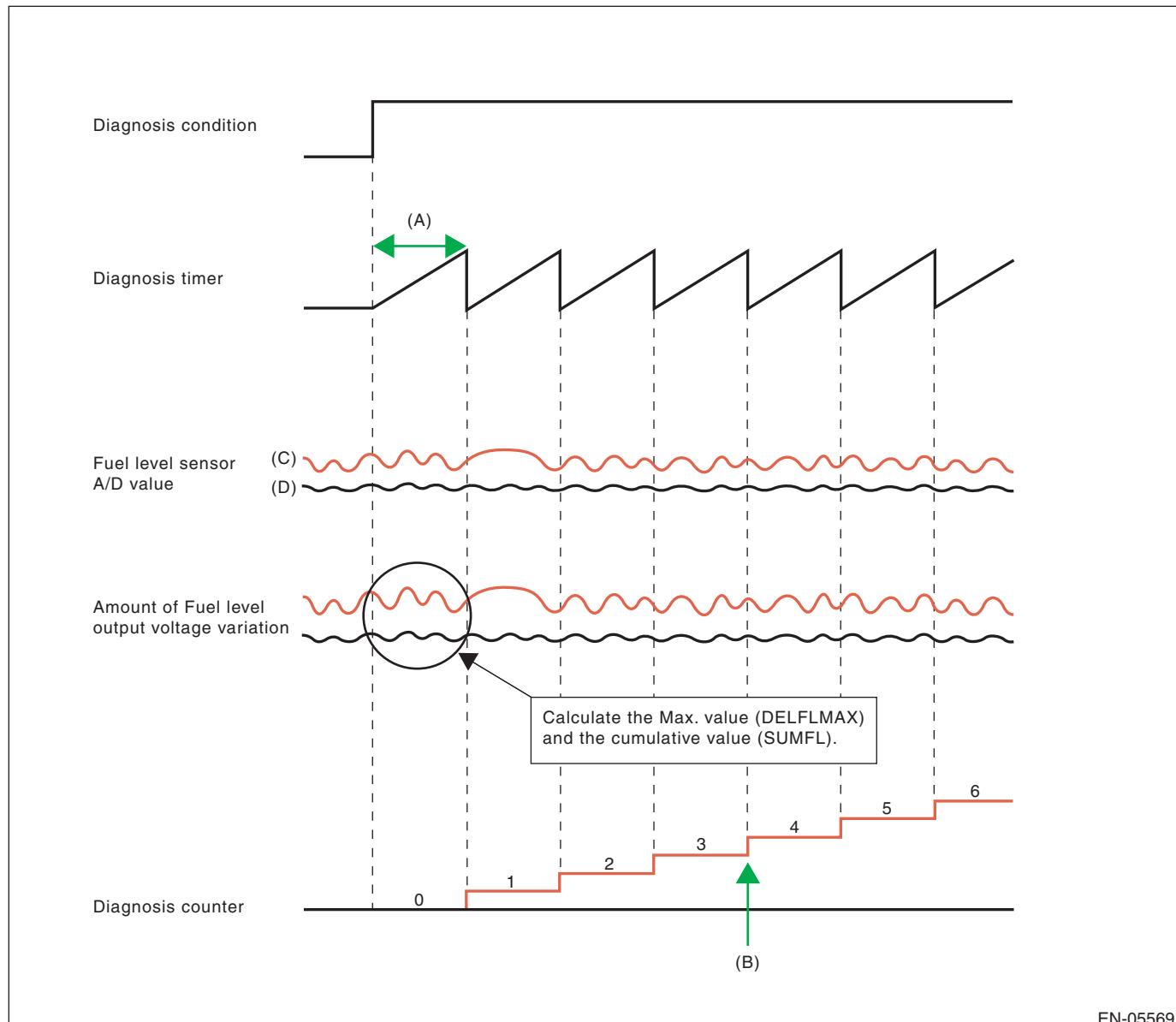
### 1. OUTLINE OF DIAGNOSIS

Detect the unstable output faults from the fuel level sensor caused by noise. Judge as NG when the Max. value and cumulative value of output voltage variation of the fuel level sensor is larger than the threshold value.

### 2. ENABLE CONDITION

| Malfunction Criteria                   | Threshold Value                                                                                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Engine speed                           | $\geq 500$ rpm                                                                                                    |
| Elapsed time after starting the engine | $\geq 1$ second                                                                                                   |
| Battery voltage                        | $\geq 10.9$ V                                                                                                     |
| Idle switch                            | ON                                                                                                                |
| Fuel level                             | $\geq 9.6 \text{ l}$ (2.54 US gal,<br>2.11 Imp gal)<br>and<br>$< 54.4 \text{ l}$ (14.37 US<br>gal, 11.97 Imp gal) |
| Vehicle speed = 0 km/h (0 MPH)         | $\geq 10000$ ms                                                                                                   |

### 3. GENERAL DRIVING CYCLE


- Always perform the diagnosis continuously at idle speed.
- Pay attention to the fuel level.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 4. DIAGNOSTIC METHOD

Calculate the Max. value (DELFLMAX) and cumulative value (SUMFL) of output voltage variation of fuel level sensor during 12.2 seconds. Judge it normal when both max. and cumulative values are not over the threshold value. Otherwise, when either of them is over the threshold value, the diagnosis counter counts up. Judge as NG if the counter indicated 4 time(s).



EN-05569

(A) 12288 ms

(C) Malfunction

(D) Normal

(B) NG at 4 time(s)

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                                                                                                                                                                                               | Threshold Value                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Integrated times of the condition reaching follows,<br>DEFLMAX<br>or<br>SUMFL<br>At this time,<br>DEFLMAX: Maximum difference of sensor output for 12288 ms<br>SUMFL: Integrated value of the sensor output deviation for 12288 ms | $\geq 4$ time(s)<br>$\geq$ Value from Map<br>$\geq 25.92$ V |

#### Map

|                                        |         |               |               |               |                |               |                 |
|----------------------------------------|---------|---------------|---------------|---------------|----------------|---------------|-----------------|
| Fuel level ( $\ell$ , US gal, Imp gal) | 0, 0, 0 | 10, 2.64, 2.2 | 20, 5.28, 4.4 | 30, 7.93, 6.6 | 40, 10.57, 8.8 | 50, 13.21, 11 | 60, 15.85, 13.2 |
| Measured voltage (V)                   | 0.27    | 0.27          | 0.426         | 0.582         | 0.738          | 0.894         | 0.894           |

The diagnosis counter does not count up when the following conditions are completed within 12288 ms.

|                                                                          |                                      |
|--------------------------------------------------------------------------|--------------------------------------|
| Maximum value – Minimum value of change of tank pressure during 12288 ms | $\geq 0$ kPa (0.375031 mmHg, 0 inHg) |
| Maximum value – Minimum value of battery voltage during 12288 ms         | $\geq 1.2$ V                         |

**Time Needed for Diagnosis:** 12288 ms  $\times$  4 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                                                                                                                                                  | Threshold Value                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| DEFLMAX<br>SUMFL<br>At this time,<br>DEFLMAX: Maximum difference of sensor output for 12288 ms<br>SUMFL: Integrated value of the sensor output deviation for 12288 ms | $<$ Value from Map<br>$< 25.92$ V |

**Time Needed for Diagnosis:** 12288 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### CR:DTC P0500 VEHICLE SPEED SENSOR “A”

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when outside of the judgement value.

Judge as NG when the received data from ABSCM&H/U is abnormal vehicle speed, and the vehicle speed data is impossible.

#### 2. COMPONENT DESCRIPTION

Vehicle speed signals are taken in to the ABS control module and hydraulic control unit, and normal/erroneous data of the ABS wheel speed sensor is received by CAN communication from the ABS control module and hydraulic control unit.

#### 3. ENABLE CONDITION

| Secondary Parameters               | Enable Conditions |
|------------------------------------|-------------------|
| Battery voltage                    | $\geq 10.9$ V     |
| Elapsed time after engine starting | $\geq 2000$ ms    |

#### 4. GENERAL DRIVING CYCLE

Always perform diagnosis more than 2000 ms after starting the engine.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria                   | Threshold Value             |
|----------------------------------------|-----------------------------|
| Front ABS wheel speed sensor status    | Malfunction                 |
| Either of the following is established |                             |
| Front left wheel speed                 | $\geq 300$ km/h (186.4 MPH) |
| Front right wheel speed                | $\geq 300$ km/h (186.4 MPH) |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria    | Threshold Value                                       |
|-------------------------|-------------------------------------------------------|
| Front left wheel speed  | $> 0$ km/h (0 MPH)<br>and<br>$< 300$ km/h (186.4 MPH) |
| Front right wheel speed | $> 0$ km/h (0 MPH)<br>and<br>$< 300$ km/h (186.4 MPH) |

**Time Needed for Diagnosis:** 2500 ms

### CS:DTC P0506 IDLE AIR CONTROL SYSTEM RPM LOWER THAN EXPECTED

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction that actual engine speed is not close to target engine speed during idling. Judge as NG when actual engine speed is not close to target engine speed during idling.

#### 2. ENABLE CONDITION

| Secondary Parameters                                                         | Enable Conditions                        |
|------------------------------------------------------------------------------|------------------------------------------|
| Engine coolant temperature                                                   | $\geq 75^{\circ}\text{C}$ (167 °F)       |
| Battery voltage                                                              | $\geq 10.9$ V                            |
| Barometric pressure                                                          | $\geq 75$ kPa (563 mmHg, 22.2 inHg)      |
| Fuel level                                                                   | $\geq 9.6$ ℥ (2.54 US gal, 2.11 Imp gal) |
| Elapsed time after starting the engine                                       | $\geq 10.49$ s                           |
| Feedback of ISC                                                              | In operation                             |
| Lambda value (left and right)                                                | $\geq 0.9$<br>and<br>$< 1.1$             |
| After switching air conditioner to ON/OFF                                    | $\geq 5.1$ s                             |
| After intake manifold pressure changes by 4 kPa (30 mmHg, 1.2 inHg) or more. | $> 5.1$ s                                |
| Elapsed time after switching neutral position switch to ON/OFF               | $> 5.1$ s                                |
| Vehicle speed                                                                | 0 km/h (0 MPH)                           |

#### 3. GENERAL DRIVING CYCLE

Perform the diagnosis continuously at idling after warming up engine.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria                        | Threshold Value |
|---------------------------------------------|-----------------|
| Actual engine speed — Targeted engine speed | $< -100$ rpm    |
| Feedback value for ISC                      | Max.            |

**Time Needed for Diagnosis:** 10 s  $\times$  3 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria                        | Threshold Value |
|---------------------------------------------|-----------------|
| Actual engine speed — Targeted engine speed | $\geq -100$ rpm |

**Time Needed for Diagnosis:** 10 s

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

## CT:DTC P0507 IDLE AIR CONTROL SYSTEM RPM HIGHER THAN EXPECTED

### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction that actual engine speed is not close to target engine speed during idling. Judge as NG when actual engine speed is not close to target engine speed during idling.

### 2. ENABLE CONDITION

| Secondary Parameters                                                         | Enable Conditions                        |
|------------------------------------------------------------------------------|------------------------------------------|
| Engine coolant temperature                                                   | $\geq 75^{\circ}\text{C}$ (167 °F)       |
| Battery voltage                                                              | $\geq 10.9$ V                            |
| Barometric pressure                                                          | $\geq 75$ kPa (563 mmHg, 22.2 inHg)      |
| Fuel level                                                                   | $\geq 9.6$ ℥ (2.54 US gal, 2.11 Imp gal) |
| Elapsed time after starting the engine                                       | $\geq 10.49$ s                           |
| Feedback of ISC                                                              | In operation                             |
| Lambda value (left and right)                                                | $\geq 0.9$<br>and<br>$< 1.1$             |
| After switching air conditioner to ON/OFF                                    | $\geq 5.1$ s                             |
| After intake manifold pressure changes by 4 kPa (30 mmHg, 1.2 inHg) or more. | $> 5.1$ s                                |
| Elapsed time after switching neutral position switch to ON/OFF               | $> 5.1$ s                                |
| Vehicle speed                                                                | 0 km/h (0 MPH)                           |

### 3. GENERAL DRIVING CYCLE

Perform the diagnosis continuously at idling after warming up engine.

### 4. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria         | Threshold Value |
|------------------------------|-----------------|
| Actual – Target engine speed | $\geq 200$ rpm  |
| Feedback value for ISC       | Min.            |

**Time Needed for Diagnosis:** 10 s  $\times$  3 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria         | Threshold Value |
|------------------------------|-----------------|
| Actual – Target engine speed | $< 200$ rpm     |

**Time Needed for Diagnosis:** 10 s

## CU:DTC P0512 STARTER REQUEST CIRCUIT

### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of starter SW.

Judge as ON NG when the starter SW signal remains ON.

### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

### 4. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value       |
|----------------------|-----------------------|
| Engine condition     | After engine starting |
| Starter OFF signal   | Not detected          |
| Battery voltage      | $\geq 8$ V            |

**Time Needed for Diagnosis:** 180000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Starter OFF signal   | Detected        |
| Battery voltage      | $\geq 8$ V      |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### CV:DTC P0513 INCORRECT IMMOBILIZER KEY

#### 1. OUTLINE OF DIAGNOSIS

| DTC   | Item                                         | Outline of diagnosis                                                                       |
|-------|----------------------------------------------|--------------------------------------------------------------------------------------------|
| P0513 | Incorrect Immobilizer Key                    | Incorrect immobilizer key (Use of unregistered key in body integrated unit)                |
| P1570 | Antenna                                      | Faulty antenna                                                                             |
| P1571 | Reference Code Incompatibility               | Reference code incompatibility between body integrated unit and ECM                        |
| P1572 | IMM Circuit Failure (Except Antenna Circuit) | Communication failure between body integrated unit and ECM                                 |
| P1574 | Key Communication Failure                    | Failure of body integrated unit to verify key (transponder) ID code or transponder failure |
| P1576 | EGI Control Module EEPROM                    | ECM malfunctioning                                                                         |
| P1577 | IMM Control Module EEPROM                    | Body integrated unit malfunctioning                                                        |
| P1578 | Meter Failure                                | Reference code incompatibility between body integrated unit and combination meter          |

#### 2. ENABLE CONDITION

When starting the engine.

#### 3. GENERAL DRIVING CYCLE

Perform the diagnosis only after starting the engine.

#### 4. DIAGNOSTIC METHOD

Judge as NG when the conditions for the outline of the diagnosis of the top are established.

## CW:DTC P0600 SERIAL COMMUNICATION LINK

### 1. OUTLINE OF DIAGNOSIS

Detect malfunction of CAN communication.

When CAN communications is not possible, and CAN communications with TCM is not possible, judge as NG if data from the TCM is not normal.

### 2. COMPONENT DESCRIPTION

ECM and TCM are connected by high speed CAN.

*(Common Specifications)*

*CAN Protocol 2.0 B (Active)*

*Frame Format: 11 Bit ID Frame (Standard Frame)*

*(High speed CAN)*

*Conforms to ISO11898*

*Communication Speed: 500 kbps*

### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously after starting the engine.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

#### Judgement Value

| Malfunction Criteria                                             | Threshold Value              |
|------------------------------------------------------------------|------------------------------|
| Battery voltage                                                  | > 10.9 V                     |
| Starter switch                                                   | OFF                          |
| Engine                                                           | run                          |
| bus off flag or error warning flag                               | set (error)                  |
| or                                                               |                              |
| ID received from control module connected to driving system CAN  | None during 500 milliseconds |
| or                                                               |                              |
| Data updated from control module connected to driving system CAN | None during 500 milliseconds |

**Time Needed for Diagnosis:** Less than 1 second

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

### Judgement Value

| Malfunction Criteria                                             | Threshold Value  |
|------------------------------------------------------------------|------------------|
| Battery voltage                                                  | > 10.9 V         |
| Starter switch                                                   | OFF              |
| Engine                                                           | run              |
| bus off flag or error warning flag                               | clear (No error) |
| ID received from control module connected to driving system CAN  | Yes              |
| Data updated from control module connected to driving system CAN | Yes              |

**Time Needed for Diagnosis:** 1000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

### **CX:DTC P0604 INTERNAL CONTROL MODULE RANDOM ACCESS MEMORY (RAM) ERROR**

#### **1. OUTLINE OF DIAGNOSIS**

Detect the malfunction of microcomputer (RAM). Perform the zero clear operation to all normal RAM areas with the initial routine, and judge as NG when the sum of all added RAM after clearing is other than \$0000.

#### **2. ENABLE CONDITION**

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

Diagnosis with the initial routine.

#### **3. GENERAL DRIVING CYCLE**

Perform the diagnosis immediately after turning ignition switch to ON.

#### **4. DIAGNOSTIC METHOD**

Judge as NG if the criteria below are met. Judge as OK and clear the NG if not established.

##### **Judgement Value**

| Malfunction Criteria                                                                       | Threshold Value |
|--------------------------------------------------------------------------------------------|-----------------|
| Result of sum of all RAM after performing the zero clear operation to all normal RAM areas | Not = 0         |

**Time Needed for Diagnosis:** Undetermined

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### **CY:DTC P0605 INTERNAL CONTROL MODULE READ ONLY MEMORY (ROM) ERROR**

#### **1. OUTLINE OF DIAGNOSIS**

Judge as NG when SUM value of ROM is outside the standard value.

#### **2. ENABLE CONDITION**

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |

#### **3. GENERAL DRIVING CYCLE**

Always perform the diagnosis continuously.

#### **4. DIAGNOSTIC METHOD**

##### **Abnormality Judgement**

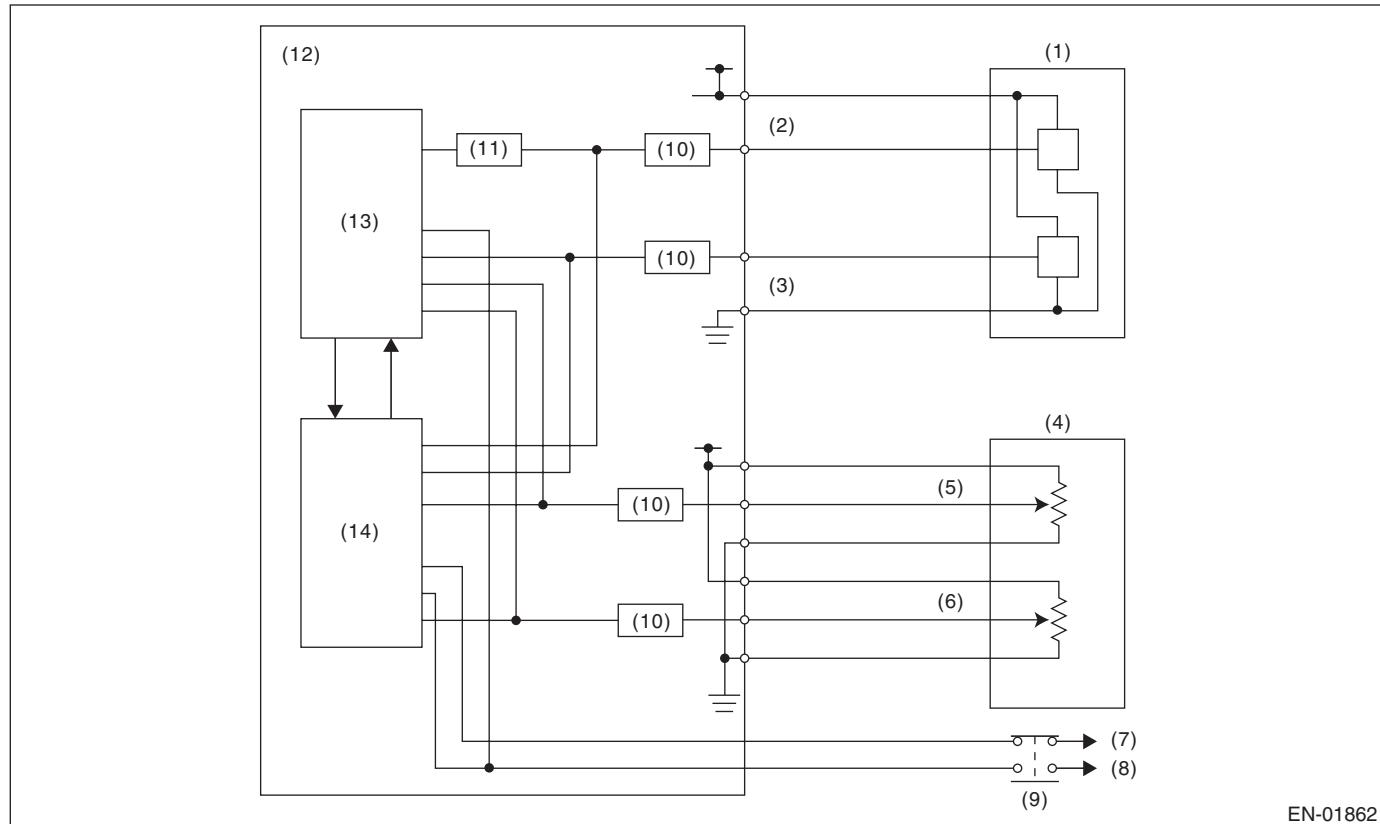
Judge as NG when the continuous time of meeting the following conditions is 0.5 seconds or more.

##### **Judgement Value**

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| SUM value of ROM     | Standard        |

**Time Needed for Diagnosis:** Undetermined

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.


### CZ:DTC P0607 THROTTLE CONTROL SYSTEM CIRCUIT RANGE/PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when any one of the followings is established.

- When the read value of throttle position sensor 1 signal is mismatched between main CPU and sub CPU.
- When the read value of accelerator pedal position sensor 1 signal is mismatched between main CPU and sub CPU.
- When the sub CPU operates abnormally.
- When the communication between main CPU ↔ sub CPU is abnormal.
- When the input amplifier circuit of throttle position sensor 1 is abnormal.
- When the cruise control cannot be canceled correctly.
- When the signal of brake SW1 and 2 is mismatched.
- When the directed angle from the main CPU is abnormal.

#### 2. COMPONENT DESCRIPTION



|                                         |                                         |                                  |
|-----------------------------------------|-----------------------------------------|----------------------------------|
| (1) Throttle position sensor            | (6) Accelerator pedal position sensor 2 | (11) Amplifier circuit           |
| (2) Throttle position sensor 1          | (7) Battery                             | (12) Engine control module (ECM) |
| (3) Throttle position sensor 2          | (8) Stop light                          | (13) Sub CPU                     |
| (4) Accelerator pedal position sensor   | (9) Brake switch                        | (14) Main CPU                    |
| (5) Accelerator pedal position sensor 1 | (10) I/F circuit                        |                                  |

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 3. ENABLE CONDITION

| Secondary Parameters                        | Enable Conditions |
|---------------------------------------------|-------------------|
| (1) Ignition switch                         | ON                |
| (2) Ignition switch                         | ON                |
| (3) None                                    | —                 |
| (4) None                                    | —                 |
| (5) Throttle opening angle                  | —                 |
| (6) Brake switch (only with cruise control) | ON                |
| (7) None                                    | —                 |
| (8) Cruise control                          | OFF               |

### 4. GENERAL DRIVING CYCLE

- (1) — (4): Always perform the diagnosis continuously.
- (5): Always perform the diagnosis continuously when idling.
- (6): Perform the diagnosis when the brake pedal is depressed.
- (7): Always perform the diagnosis continuously.
- (8): Always perform the diagnosis continuously when the cruise control pedal is not operating.

### 5. DIAGNOSTIC METHOD

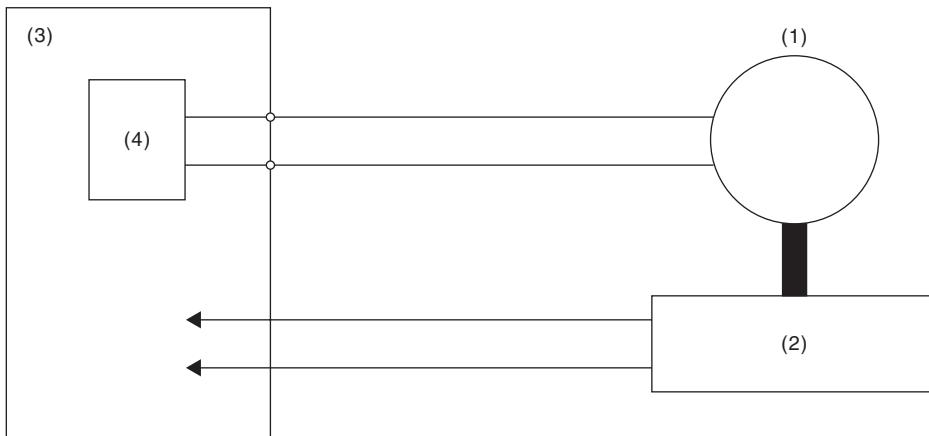
Judge as OK and clear the NG when the malfunction criteria below are met.

#### Judgement Value

| Malfunction Criteria                                                                                                   | Threshold Value                 |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| (1) Difference of CPU reading value of the throttle position sensor signal                                             | Within 0.085 V                  |
| (2) Difference of CPU read value of the accelerator pedal position sensor signal                                       | Within 0.047 V                  |
| (3) WD pulse from sub CPU                                                                                              | WD pulse occur                  |
| (4) Communication between CPU                                                                                          | Possible to communicate         |
| (5)  Throttle position sensor 1 opening angle — (Throttle position sensor 1 opening angle after passing amplifier) 1/4 | < 3°                            |
| (6) Cruise control cancel signal at brake ON                                                                           | Cruise control cancel signal ON |
| (7) Brake switch 1, 2 signal                                                                                           | SW 1 and 2 are matched          |

#### Time Needed for Diagnosis:

1. 250 milliseconds
2. 250 milliseconds
3. 200 milliseconds
4. 200 milliseconds
5. 24 milliseconds
6. 250 milliseconds
7. 200 milliseconds


**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

### DA:DTC P0638 THROTTLE ACTUATOR CONTROL RANGE/PERFORMANCE (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when the target opening angle and actual opening angle is mismatched or the current to motor is the specified duty or more for specified time continuously.

#### 2. COMPONENT DESCRIPTION



EN-01863

(1) Motor

(3) Engine control module (ECM)

(4) Drive circuit

(2) Throttle position sensor

#### 3. ENABLE CONDITION

| Secondary Parameters                            | Enable Conditions |
|-------------------------------------------------|-------------------|
| Ignition switch                                 | ON                |
| Normal operation of electronic throttle control | ON                |

#### 4. GENERAL DRIVING CYCLE

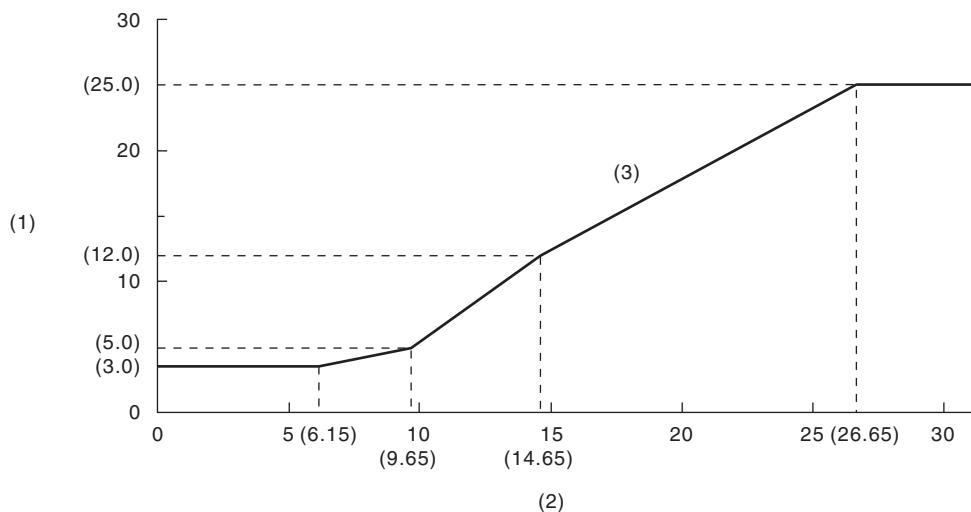
Always perform the diagnosis continuously when the electronic throttle control is operating.

#### 5. DIAGNOSTIC METHOD

Judge as OK and clear the NG when the malfunction criteria below are met.

##### Judgement Value

| Malfunction Criteria                                             | Threshold Value |
|------------------------------------------------------------------|-----------------|
| Difference between target opening angle and actual opening angle | 3° or less      |
| Output duty to drive circuit                                     | 95% or less     |


##### Time Needed for Diagnosis:

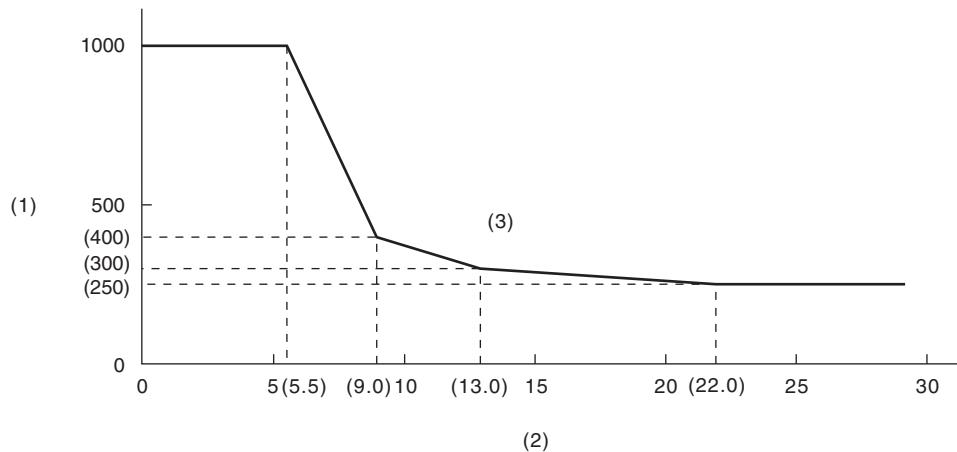
- Target opening angle and actual opening angle: 250 milliseconds (For NG) 2000 milliseconds (For OK)
- Output duty to drive circuit: 2000 milliseconds

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### Details of Judgement Value




EN-03230

(1) Difference between target opening angle and actual opening angle (°)

(2) Target throttle opening angle (°)

(3) NG area

### Details of Judgement time (The actual opening angle $\leq$ target opening angle is always 1000 milliseconds)



EN-01865

(1) Judgement time (milliseconds)

(2) Throttle position sensor 1 opening angle

(3) NG area

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

### DB:DTC P0700 TRANSMISSION CONTROL SYSTEM (MIL REQUEST)

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when there is CAN communication with the TCM and there is a MIL lighting request.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria          | Threshold Value |
|-------------------------------|-----------------|
| Battery voltage               | $\geq 10.9$ V   |
| MIL lighting request from TCM | Yes             |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria          | Threshold Value |
|-------------------------------|-----------------|
| Battery voltage               | $\geq 10.9$ V   |
| MIL lighting request from TCM | None            |

**Time Needed for Diagnosis:** Less than 1 second

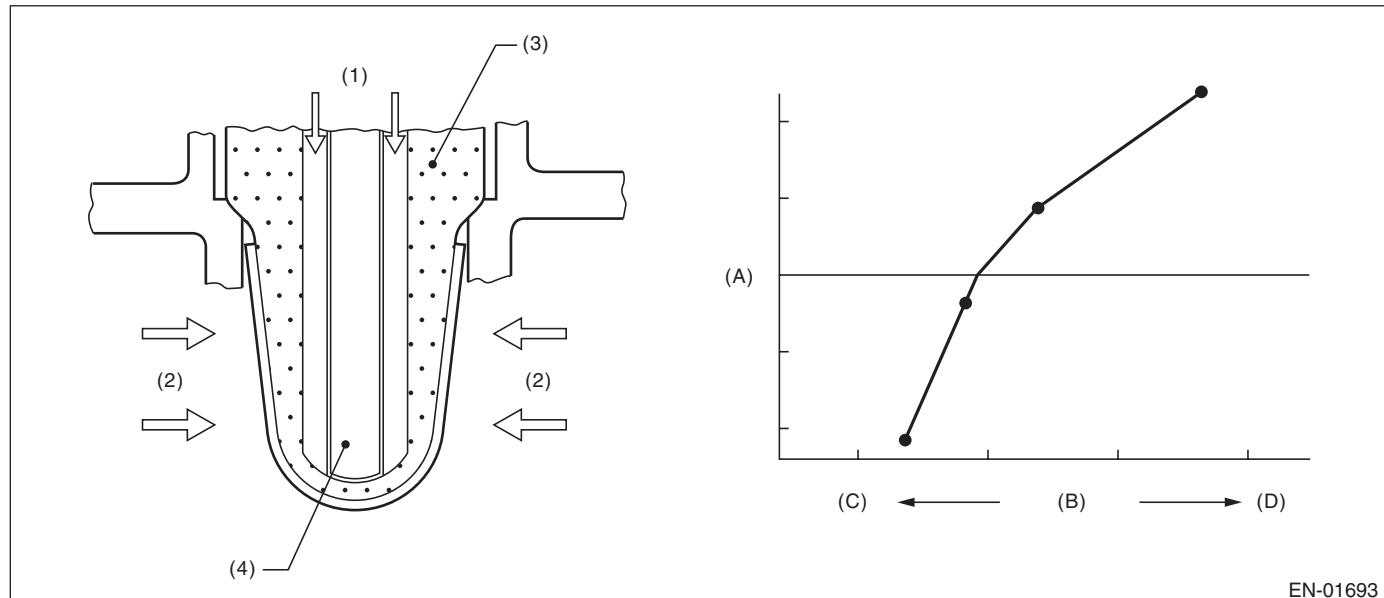
# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### DC:DTC P1152 O2 SENSOR CIRCUIT RANGE/PERFORMANCE (LOW) (BANK 1 SENSOR 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect that  $\lambda$  value remains low.


Judge as NG when lambda value is abnormal in accordance with  $\lambda$  value of front oxygen (A/F) sensor and running conditions such as vehicle speed, amount of intake air, engine coolant temperature, sub feedback control, etc.

$\lambda$  value = Actual air fuel ratio/Theoretical air fuel ratio

$\lambda > 1$ : Lean

$\lambda < 1$ : Rich

#### 2. COMPONENT DESCRIPTION



EN-01693

(A) Electromotive force  
(B) Air fuel ratio

(C) Lean

(D) Rich

(1) Atmosphere  
(2) Exhaust gas

(3)  $\text{ZrO}_2$

(4) Ceramic heater

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 3. ENABLE CONDITION

| Secondary Parameters                                                | Enable Conditions                   |
|---------------------------------------------------------------------|-------------------------------------|
| Time needed for all secondary parameters to be in enable conditions | $\geq 4096$ ms                      |
| Battery voltage                                                     | $\geq 10.9$ V                       |
| Barometric pressure                                                 | $\geq 75$ kPa (563 mmHg, 22.2 inHg) |
| Rear oxygen sensor sub feedback                                     | Execution                           |
| Rear oxygen sensor output voltage – Feedback target voltage         | $-0.2$ V — $0.1$ V                  |
| or                                                                  |                                     |
| Rear oxygen sensor sub feedback compensation coefficient            | On Min.                             |
| or                                                                  |                                     |
| Rear oxygen sensor sub feedback compensation coefficient            | On Max.                             |
| Elapsed time after starting the engine                              | $\geq 60000$ ms                     |
| Engine coolant temperature                                          | $\geq 75$ °C (167 °F)               |
| Vehicle speed                                                       | $\geq 20$ km/h (12.4 MPH)           |
| Amount of intake air                                                | $\geq 8$ g/s (0.28 oz/s)            |
| Load change at 120°CA                                               | $< 0.02$ g/rev (0 oz/rev)           |
| Front oxygen (A/F) sensor impedance                                 | $0 \Omega$ — $50 \Omega$            |
| Learning value of evaporation gas density                           | $< 0.2$                             |
| Total time of operating canister purge                              | $\geq 19.9$ s                       |
| Targeted lambda value load compensation coefficient                 | $-0.05$ — $0.050$                   |

### 4. GENERAL DRIVING CYCLE

Perform diagnosis continuously at a constant speed of 20 km/h (12.4 MPH) or more after 60000 ms have passed since the engine started.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| $\lambda$ value      | $< 0.85$        |

**Time Needed for Diagnosis:** 10000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| $\lambda$ value      | $\geq 0.85$     |

**Time Needed for Diagnosis:** Less than 1 second

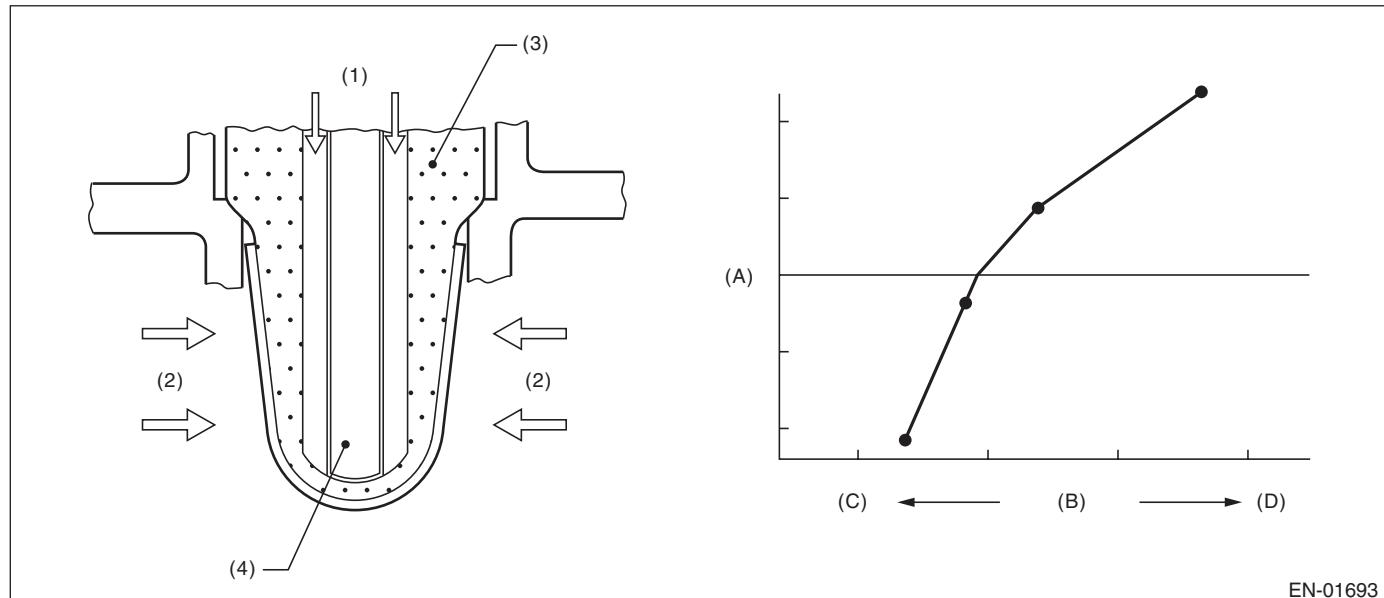
# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### DD:DTC P1153 O2 SENSOR CIRCUIT RANGE/PERFORMANCE (HIGH) (BANK 1 SENSOR 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect that  $\lambda$  value remains high.


Judge as NG when lambda value is abnormal in accordance with  $\lambda$  value of front oxygen (A/F) sensor and running conditions such as vehicle speed, amount of intake air, engine coolant temperature, sub feedback control, etc.

$\lambda$  value = Actual air fuel ratio/Theoretical air fuel ratio

$\lambda > 1$ : Lean

$\lambda < 1$ : Rich

#### 2. COMPONENT DESCRIPTION



EN-01693

(A) Electromotive force  
(B) Air fuel ratio

(C) Lean

(D) Rich

(1) Atmosphere  
(2) Exhaust gas

(3)  $\text{ZrO}_2$

(4) Ceramic heater

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### 3. ENABLE CONDITION

| Secondary Parameters                                                | Enable Conditions                   |
|---------------------------------------------------------------------|-------------------------------------|
| Time needed for all secondary parameters to be in enable conditions | $\geq 4096$ ms                      |
| Battery voltage                                                     | $\geq 10.9$ V                       |
| Barometric pressure                                                 | $\geq 75$ kPa (563 mmHg, 22.2 inHg) |
| Rear oxygen sensor sub feedback                                     | Execution                           |
| Rear oxygen sensor output voltage – Feedback target voltage         | $-0.2$ V — $0.1$ V                  |
| or                                                                  |                                     |
| Rear oxygen sensor sub feedback compensation coefficient            | On Min.                             |
| or                                                                  |                                     |
| Rear oxygen sensor sub feedback compensation coefficient            | On Max.                             |
| Elapsed time after starting the engine                              | $\geq 60000$ ms                     |
| Engine coolant temperature                                          | $\geq 75$ °C (167 °F)               |
| Vehicle speed                                                       | $\geq 20$ km/h (12.4 MPH)           |
| Amount of intake air                                                | $\geq 8$ g/s (0.28 oz/s)            |
| Load change at 120°CA                                               | $< 0.02$ g/rev (0 oz/rev)           |
| Front oxygen (A/F) sensor impedance                                 | $0 \Omega$ — $50 \Omega$            |
| Learning value of evaporation gas density                           | $< 0.2$                             |
| Total time of operating canister purge                              | $\geq 19.9$ s                       |
| Targeted lambda value load compensation coefficient                 | $-0.05$ — $0.050$                   |

### 4. GENERAL DRIVING CYCLE

Perform diagnosis continuously at a constant speed of 20 km/h (12.4 MPH) or more after 60000 ms have passed since the engine started.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| $\lambda$ value      | $> 1.15$        |

**Time Needed for Diagnosis:** 10000 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| $\lambda$ value      | $\leq 1.15$     |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### **DE:DTC P1154 O2 SENSOR CIRCUIT RANGE/PERFORMANCE (LOW) (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

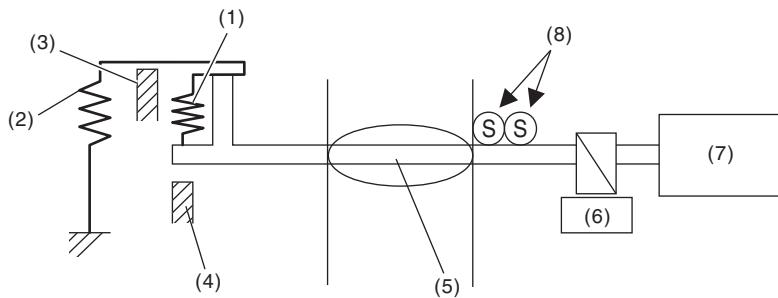
##### NOTE:

For the detection standard, refer to DTC P1152. <Ref. to GD(H6DO)-164, DTC P1152 O2 SENSOR CIRCUIT RANGE/PERFORMANCE (LOW) (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **DF:DTC P1155 O2 SENSOR CIRCUIT RANGE/PERFORMANCE (HIGH) (BANK 2 SENSOR 1)**

#### **1. OUTLINE OF DIAGNOSIS**

##### NOTE:


For the detection standard, refer to DTC P1153. <Ref. to GD(H6DO)-166, DTC P1153 O2 SENSOR CIRCUIT RANGE/PERFORMANCE (HIGH) (BANK 1 SENSOR 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### DG:DTC P1160 RETURN SPRING FAILURE

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when the valve is opened more than the default opening angle, but does not move to the close direction with the motor power stopped.

#### 2. COMPONENT DESCRIPTION



EN-04463

|     |                      |     |                     |     |                                       |
|-----|----------------------|-----|---------------------|-----|---------------------------------------|
| (1) | Opener spring        | (4) | Full closed stopper | (7) | DC motor                              |
| (2) | Return spring        | (5) | Throttle valve      | (8) | Main and sub throttle position sensor |
| (3) | Intermediate stopper | (6) | Gear                |     |                                       |

#### 3. ENABLE CONDITION

| Secondary Parameters     | Enable Conditions |
|--------------------------|-------------------|
| Battery voltage          | $\geq 6$ V        |
| Throttle position sensor | Normal            |

#### 4. GENERAL DRIVING CYCLE

- Ignition switch ON → OFF
- Ignition switch OFF → ON (Only after clearing memory)

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

Judge as NG when the following conditions are established.

#### Judgement Value

| Malfunction Criteria                             | Threshold Value |
|--------------------------------------------------|-----------------|
| Opening variation after continuity is set to OFF | < 2 °           |

**Time Needed for Diagnosis:** 24 ms

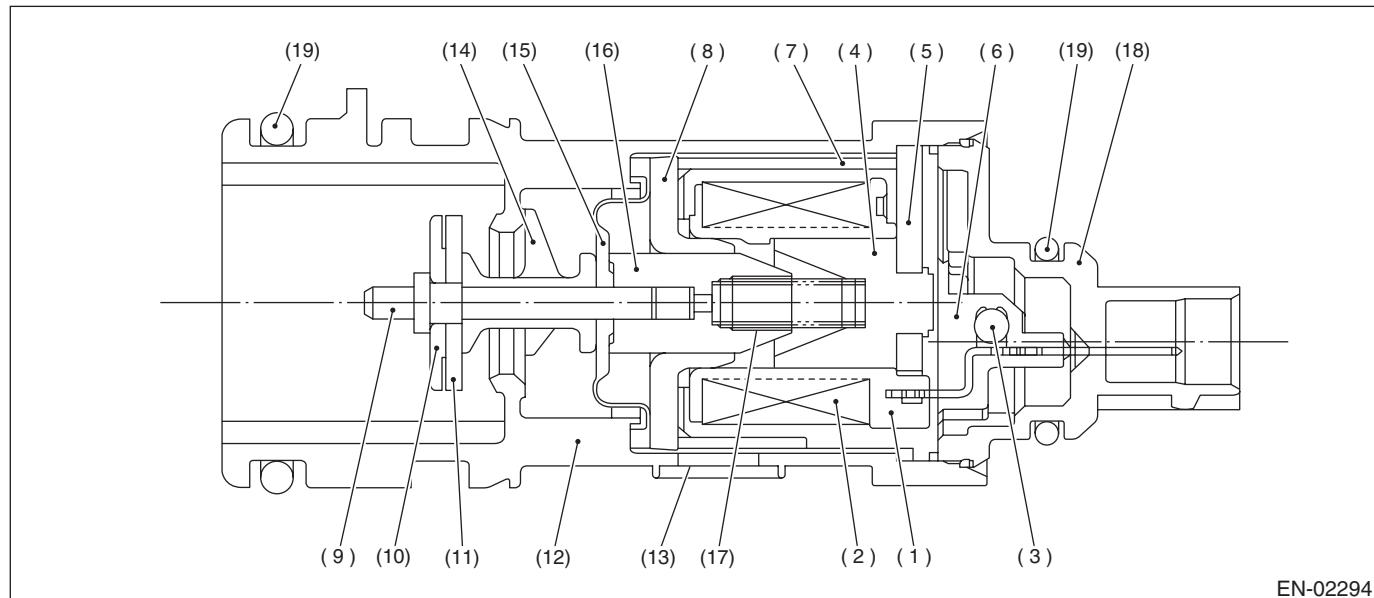
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the following conditions are established.

#### Judgement Value

| Malfunction Criteria                             | Threshold Value |
|--------------------------------------------------|-----------------|
| Opening variation after continuity is set to OFF | ≥ 2 °           |


**Time Needed for Diagnosis:** 3400 ms

### DH:DTC P1443 VENT CONTROL SOLENOID VALVE FUNCTION PROBLEM

#### 1. OUTLINE OF DIAGNOSIS

Detect the abnormal function (stuck closed) of the drain valve.  
Judge as NG when fuel tank pressure is low.

#### 2. COMPONENT DESCRIPTION



|                 |                    |                   |
|-----------------|--------------------|-------------------|
| (1) Bobbin      | (8) Magnetic plate | (14) Retainer     |
| (2) Coil        | (9) Shaft          | (15) Diaphragm    |
| (3) Diode       | (10) Plate         | (16) Movable core |
| (4) Stator core | (11) Valve         | (17) Spring       |
| (5) End plate   | (12) Housing       | (18) Cover        |
| (6) Body        | (13) Filter        | (19) O-ring       |
| (7) Yoke        |                    |                   |

#### 3. ENABLE CONDITION

| Secondary Parameters                   | Enable Conditions                                                        |
|----------------------------------------|--------------------------------------------------------------------------|
| Drain valve                            | Open                                                                     |
| Battery voltage                        | $\geq 10.9$ V                                                            |
| Barometric pressure                    | $\geq 75$ kPa (563 mmHg, 22.2 inHg)                                      |
| Tank pressure when starter is OFF → ON | $-0.5$ kPa (-4 mmHg, -0.2 inHg)<br>and<br>$0.4$ kPa (2.9 mmHg, 0.1 inHg) |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria | Threshold Value                                             |
|----------------------|-------------------------------------------------------------|
| Fuel tank pressure   | $\leq -4 \text{ kPa} (-30 \text{ mmHg}, -1.2 \text{ inHg})$ |

**Time Needed for Diagnosis:** 3000 ms

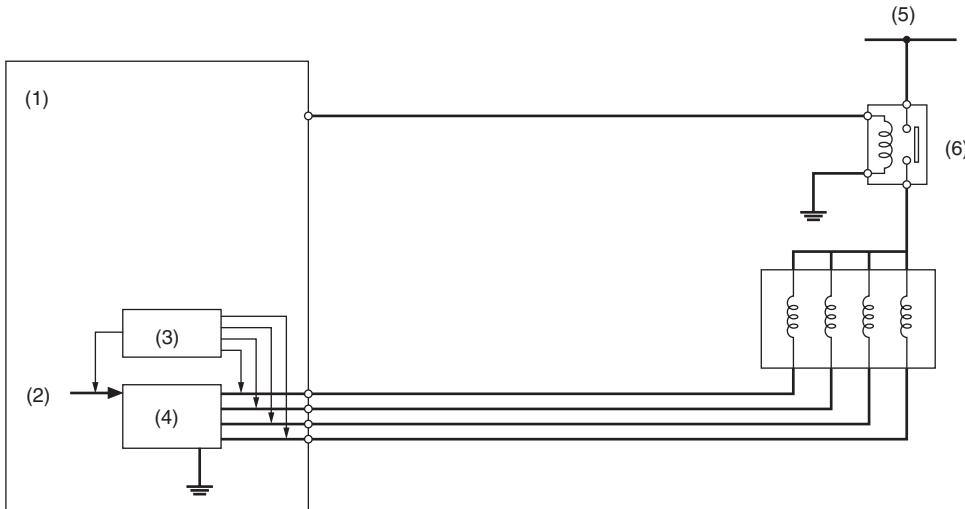
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                                             | Threshold Value                                                                                                           |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Fuel tank pressure                                               | $> -4 \text{ kPa} (-30 \text{ mmHg}, -1.2 \text{ inHg})$                                                                  |
| Cumulative time when all the malfunction criteria below are met. | $\geq 30000 \text{ ms}$                                                                                                   |
| Purge control solenoid valve duty                                | Not = 0                                                                                                                   |
| Fuel temperature                                                 | $-10 \text{ }^{\circ}\text{C} (14 \text{ }^{\circ}\text{F}) — 70 \text{ }^{\circ}\text{C} (158 \text{ }^{\circ}\text{F})$ |
| Intake manifold relative pressure                                | $\geq -26.7 \text{ kPa} (-200 \text{ mmHg}, -7.9 \text{ inHg})$                                                           |


**Time Needed for Diagnosis:** Less than 1 second

### DI: DTC P1492 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (LOW INPUT)

#### 1. OUTLINE OF DIAGNOSIS

- Detects open or short circuit of EGR.
- Judge as NG when the ECM output level differs from the actual terminal level.

#### 2. COMPONENT DESCRIPTION



EN-02051

(1) Engine control module (ECM)  
(2) Computer unit (CPU)

(3) Detecting circuit  
(4) Switch circuit

(5) Battery voltage  
(6) Main relay

#### 3. ENABLE CONDITION

| Secondary Parameters                   | Enable Conditions |
|----------------------------------------|-------------------|
| Elapsed time after starting the engine | $\geq 1$ second   |
| EGR valve target position              | $> 0$ step        |
| Battery voltage                        | $\geq 10.9$ V     |

#### 4. GENERAL DRIVING CYCLE

Perform diagnosis continuously during EGR operation.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Terminal voltage level when ECM outputs OFF signal | Low level       |
| or                                                 |                 |
| Terminal voltage level when EGR operates           | Low level       |

**Time Needed for Diagnosis:** 2500 ms

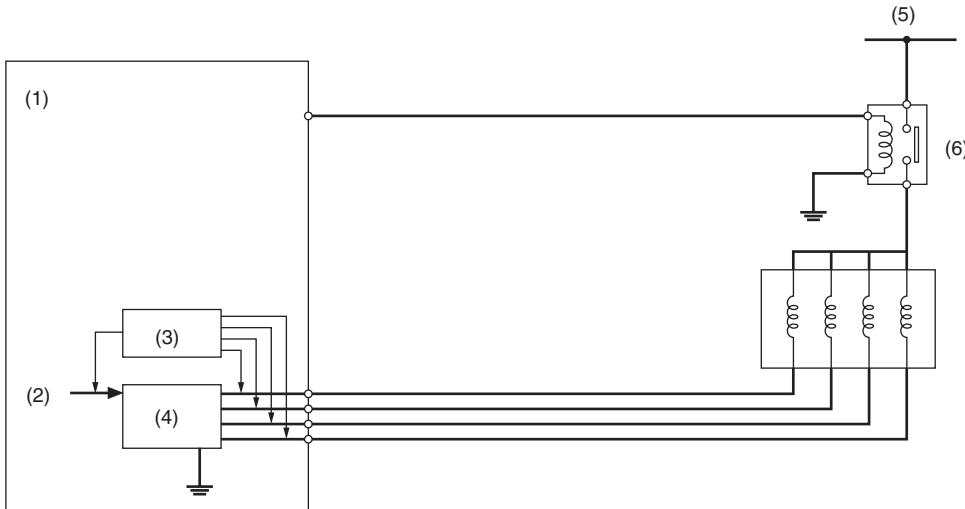
**Malfunction Indicator Light:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Terminal voltage level when ECM outputs OFF signal | High level      |
| Terminal voltage level when EGR operates           | High level      |


**Time Needed for Diagnosis:** 256 ms

### DJ:DTC P1493 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (HIGH INPUT)

#### 1. OUTLINE OF DIAGNOSIS

- Detects open or short circuit of EGR.
- Judge as NG when the ECM output level differs from the actual terminal level.

#### 2. COMPONENT DESCRIPTION



EN-02051

(1) Engine control module (ECM)  
(2) Computer unit (CPU)

(3) Detecting circuit  
(4) Switch circuit

(5) Battery voltage  
(6) Main relay

#### 3. ENABLE CONDITION

| Secondary Parameters                   | Enable Conditions |
|----------------------------------------|-------------------|
| Elapsed time after starting the engine | $\geq 1$ second   |
| EGR valve target position              | $> 0$ step        |
| Battery voltage                        | $\geq 10.9$ V     |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                                                                 | Threshold Value |
|------------------------------------------------------------------------------------------------------|-----------------|
| Terminal voltage level when ECM outputs OFF signal<br>or<br>Terminal voltage level when EGR operates | High level      |
|                                                                                                      | High level      |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Terminal voltage level when ECM outputs OFF signal | Low level       |
| Terminal voltage level when EGR operates           | Low level       |

**Time Needed for Diagnosis:** 256 ms

### **DK:DTC P1494 EGR SOLENOID VALVE SIGNAL #2 CIRCUIT MALFUNCTION (LOW INPUT)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P1492. <Ref. to GD(H6DO)-173, DTC P1492 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (LOW INPUT), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **DL:DTC P1495 EGR SOLENOID VALVE SIGNAL #2 CIRCUIT MALFUNCTION (HIGH INPUT)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P1493. <Ref. to GD(H6DO)-175, DTC P1493 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (HIGH INPUT), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **DM:DTC P1496 EGR SOLENOID VALVE SIGNAL #3 CIRCUIT MALFUNCTION (LOW INPUT)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P1492. <Ref. to GD(H6DO)-173, DTC P1492 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (LOW INPUT), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **DN:DTC P1497 EGR SOLENOID VALVE SIGNAL #3 CIRCUIT MALFUNCTION (HIGH INPUT)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P1493. <Ref. to GD(H6DO)-175, DTC P1493 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (HIGH INPUT), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **DO:DTC P1498 EGR SOLENOID VALVE SIGNAL #4 CIRCUIT MALFUNCTION (LOW INPUT)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P1492. <Ref. to GD(H6DO)-173, DTC P1492 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (LOW INPUT), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **DP:DTC P1499 EGR SOLENOID VALVE SIGNAL #4 CIRCUIT MALFUNCTION (HIGH INPUT)**

#### **1. OUTLINE OF DIAGNOSIS**

NOTE:

For the detection standard, refer to DTC P1493. <Ref. to GD(H6DO)-175, DTC P1493 EGR SOLENOID VALVE SIGNAL #1 CIRCUIT MALFUNCTION (HIGH INPUT), Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### DQ:DTC P1560 BACK-UP VOLTAGE CIRCUIT MALFUNCTION

#### 1. OUTLINE OF DIAGNOSIS

Detect the open/short circuit of back-up power supply circuit.  
Judge as NG when the backup power voltage is low.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria            | Threshold Value       |
|---------------------------------|-----------------------|
| Voltage of back-up power supply | Low                   |
| Battery voltage                 | $\geq 10.9$ V         |
| Engine condition                | After engine starting |

**Time Needed for Diagnosis:** 2500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria            | Threshold Value       |
|---------------------------------|-----------------------|
| Voltage of back-up power supply | High                  |
| Battery voltage                 | $\geq 10.9$ V         |
| Engine condition                | After engine starting |

**Time Needed for Diagnosis:** Less than 1 second

## DR:DTC P1570 ANTENNA

### 1. OUTLINE OF DIAGNOSIS

NOTE:

For the detection standard, refer to DTC P0513. <Ref. to GD(H6DO)-154, DTC P0513 INCORRECT IMMOBILIZER KEY, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## DS:DTC P1571 REFERENCE CODE INCOMPATIBILITY

### 1. OUTLINE OF DIAGNOSIS

NOTE:

For the detection standard, refer to DTC P0513. <Ref. to GD(H6DO)-154, DTC P0513 INCORRECT IMMOBILIZER KEY, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## DT:DTC P1572 IMM CIRCUIT FAILURE (EXCEPT ANTENNA CIRCUIT)

### 1. OUTLINE OF DIAGNOSIS

NOTE:

For the detection standard, refer to DTC P0513. <Ref. to GD(H6DO)-154, DTC P0513 INCORRECT IMMOBILIZER KEY, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## DU:DTC P1574 KEY COMMUNICATION FAILURE

### 1. OUTLINE OF DIAGNOSIS

NOTE:

For the detection standard, refer to DTC P0513. <Ref. to GD(H6DO)-154, DTC P0513 INCORRECT IMMOBILIZER KEY, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## DV:DTC P1576 EGI CONTROL MODULE EEPROM

### 1. OUTLINE OF DIAGNOSIS

NOTE:

For the detection standard, refer to DTC P0513. <Ref. to GD(H6DO)-154, DTC P0513 INCORRECT IMMOBILIZER KEY, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## DW:DTC P1577 IMM CONTROL MODULE EEPROM

### 1. OUTLINE OF DIAGNOSIS

NOTE:

For the detection standard, refer to DTC P0513. <Ref. to GD(H6DO)-154, DTC P0513 INCORRECT IMMOBILIZER KEY, Diagnostic Trouble Code (DTC) Detecting Criteria.>

## DX:DTC P1578 METER FAILURE

### 1. OUTLINE OF DIAGNOSIS

NOTE:

For the detection standard, refer to DTC P0513. <Ref. to GD(H6DO)-154, DTC P0513 INCORRECT IMMOBILIZER KEY, Diagnostic Trouble Code (DTC) Detecting Criteria.>

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### DY:DTC P1602 CONTROL MODULE PROGRAMMING ERROR

#### 1. OUTLINE OF DIAGNOSIS

Detect malfunctions of the catalyst advanced idling retard angle control.

Judge as NG when ECM is not controlling the angle properly during catalyst advanced idling retard angle control.

Judge as NG if there is exhaust gas temperature diagnosis and idle speed diagnosis and if either of them is NG.

- Exhaust gas temperature diagnosis

Judge as NG when the estimated exhausted gas temperature in 14 seconds after the cold start is below the specified value.

- Idle speed diagnosis

Judge as NG when actual engine speed is not close to target engine speed after terminating the retard angle control.

#### 2. ENABLE CONDITION

| Secondary Parameters        | Enable Conditions                           |
|-----------------------------|---------------------------------------------|
| Atmosphere pressure         | $\geq 75 \text{ kPa (563 mmHg, 22.2 inHg)}$ |
| Battery voltage             | $\geq 10.9 \text{ V}$                       |
| Cold start diagnosis        | Incomplete                                  |
| Vehicle speed               | $< 2 \text{ km/h (1.2 MPH)}$                |
| Misfire in 200 engine revs. | $< 5$                                       |
| Time after starting         | = 14 seconds                                |

#### 3. GENERAL DRIVING CYCLE

Perform the diagnosis at cold start.

#### 4. DIAGNOSTIC METHOD

- Exhaust gas temperature diagnosis

##### Abnormality Judgement

Calculate the estimated exhaust gas temperature when the diagnostic enable condition is established. Judge as NG when the following conditions are established after engine starting within the predetermined time.

##### Judgement Value

| Malfunction Criteria              | Threshold Value  |
|-----------------------------------|------------------|
| Estimated exhaust gas temperature | < Value from Map |

##### Map

|                                               |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|-----------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Coolant temperature after starting the engine | -40 °C<br>(-40 °F) | -30 °C<br>(-22 °F) | -20 °C<br>(-4 °F)  | -10 °C<br>(14 °F)  | 0 °C<br>(32 °F)    | 10 °C<br>(50 °F)   | 20 °C<br>(68 °F)   | 30 °C<br>(86 °F)   | 40 °C<br>(104 °F)  | 50 °C<br>(122 °F)  |
| Threshold Value                               | 170 °C<br>(338 °F) | 155 °C<br>(311 °F) | 150 °C<br>(302 °F) | 150 °C<br>(302 °F) |

**Time Needed for Diagnosis:** 14 seconds

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

##### Normality Judgement

Judge as OK and clear the NG if the following conditions are established.

##### Judgement Value

| Malfunction Criteria              | Threshold Value       |
|-----------------------------------|-----------------------|
| Estimated exhaust gas temperature | $\geq$ Value from Map |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### • Idle speed diagnosis

#### Abnormality Judgement

Judge as NG when the following conditions are established after the predetermined time.

#### Judgement Value

| Malfunction Criteria                                                      | Threshold Value |
|---------------------------------------------------------------------------|-----------------|
| Continuous time of (Target engine speed – Actual engine speed > –200 rpm) | $\geq 6000$ ms  |
| Continuous time of (actual retard amount > 20 °CA)                        | $\geq 0$ ms     |

**Time Needed for Diagnosis:** 14 seconds

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### Normality Judgement

Judge as OK and clear the NG if the following conditions are established.

#### Judgement Value

| Malfunction Criteria                                                      | Threshold Value |
|---------------------------------------------------------------------------|-----------------|
| Continuous time of (Target engine speed – Actual engine speed > –200 rpm) | $< 6000$ ms     |
| Continuous time of (actual retard amount > 20 °CA)                        | $< 0$ ms        |

**Time Needed for Diagnosis:** Less than 1 second

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### DZ:DTC P2088 INTAKE CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT LOW (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of the oil flow control solenoid valve.

Judge as NG when the current is small even though the duty signal is large.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Battery voltage                                    | $\geq 10.9$ V   |
| Oil flow control solenoid valve control duty       | $\geq 99.61$ %  |
| Oil control solenoid valve control present current | $< 0.306$ A     |

**Time Needed for Diagnosis:** 2000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria                                                                                                | Threshold Value |
|---------------------------------------------------------------------------------------------------------------------|-----------------|
| Battery voltage                                                                                                     | $\geq 10.9$ V   |
| Target current value of the oil flow control solenoid valve                                                         | $\geq 0.14$ A   |
| Target current value of the oil flow control solenoid valve – oil flow control solenoid valve control current value | $< 0.08$ A      |

**Time Needed for Diagnosis:** 2000 ms

### EA:DTC P2089 INTAKE CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT HIGH (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect open or short circuit of oil flow control solenoid valve.

Judge as NG when the current is large even though the duty signal is small.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Battery voltage                                    | $\geq 10.9$ V   |
| Oil flow control solenoid valve control duty       | < 0.39 %        |
| Oil control solenoid valve control present current | $\geq 0.306$ A  |

**Time Needed for Diagnosis:** 2000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria                                                                                                | Threshold Value |
|---------------------------------------------------------------------------------------------------------------------|-----------------|
| Battery voltage                                                                                                     | $\geq 10.9$ V   |
| Target current value of the oil flow control solenoid valve – Oil flow control solenoid valve control current value | < 0.08 A        |

**Time Needed for Diagnosis:** 2000 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

### EB:DTC P2090 EXHAUST CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT LOW (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect open circuit of the oil flow control solenoid valve.

Judge as open NG when the current is small even though the duty signal is large.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Battery voltage                                    | $\geq 10.9$ V   |
| Oil flow control solenoid valve control duty       | $\geq 99.61$ %  |
| Oil control solenoid valve control present current | $< 0.306$ A     |

**Time Needed for Diagnosis:** 2000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria                                                                                                | Threshold Value |
|---------------------------------------------------------------------------------------------------------------------|-----------------|
| Battery voltage                                                                                                     | $\geq 10.9$ V   |
| Target current value of the oil flow control solenoid valve                                                         | $\geq 0.14$ A   |
| Target current value of the oil flow control solenoid valve – Oil flow control solenoid valve control current value | $< 0.08$ A      |

**Time Needed for Diagnosis:** 2000 ms

### EC:DTC P2091 EXHAUST CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT HIGH (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect short circuit of oil flow control solenoid valve.

Judge as short NG when the current is large even though the duty signal is small.

#### 2. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 3. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 4. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria                               | Threshold Value |
|----------------------------------------------------|-----------------|
| Battery voltage                                    | $\geq 10.9$ V   |
| Oil flow control solenoid valve control duty       | $< 0.39$ %      |
| Oil control solenoid valve control present current | $\geq 0.306$ A  |

**Time Needed for Diagnosis:** 2000 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria                                                                                                | Threshold Value |
|---------------------------------------------------------------------------------------------------------------------|-----------------|
| Battery voltage                                                                                                     | $\geq 10.9$ V   |
| Target current value of the oil flow control solenoid valve – Oil flow control solenoid valve control current value | $< 0.08$ A      |

**Time Needed for Diagnosis:** 2000 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### **ED:DTC P2092 INTAKE CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT LOW (BANK 2)**

#### **1. OUTLINE OF DIAGNOSIS**

##### NOTE:

For the detection standard, refer to DTC P2088. <Ref. to GD(H6DO)-182, DTC P2088 INTAKE CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT LOW (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **EE:DTC P2093 INTAKE CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT HIGH (BANK 2)**

#### **1. OUTLINE OF DIAGNOSIS**

##### NOTE:

For the detection standard, refer to DTC P2089. <Ref. to GD(H6DO)-183, DTC P2089 INTAKE CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT HIGH (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **EF:DTC P2094 EXHAUST CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT LOW (BANK 2)**

#### **1. OUTLINE OF DIAGNOSIS**

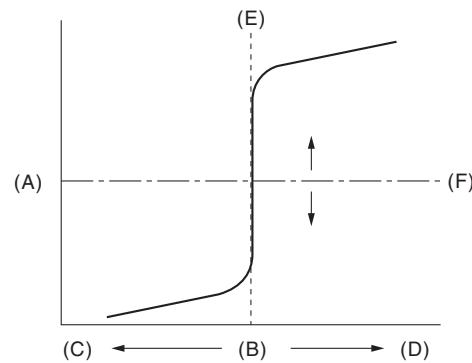
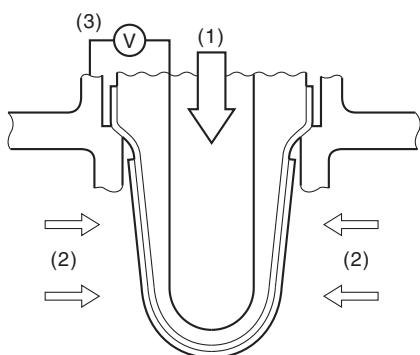
##### NOTE:

For the detection standard, refer to DTC P2090. <Ref. to GD(H6DO)-184, DTC P2090 EXHAUST CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT LOW (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### **EG:DTC P2095 EXHAUST CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT HIGH (BANK 2)**

#### **1. OUTLINE OF DIAGNOSIS**

##### NOTE:



For the detection standard, refer to DTC P2091. <Ref. to GD(H6DO)-185, DTC P2091 EXHAUST CAMSHAFT POSITION ACTUATOR CONTROL CIRCUIT HIGH (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### EH:DTC P2096 POST CATALYST FUEL TRIM SYSTEM TOO LEAN (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of fuel system from the size of the sub feedback learning value. Control the sub feedback learning and judge as NG when the learning value is in the lean zone.

#### 2. COMPONENT DESCRIPTION



EN-01696

|                         |                 |                                |
|-------------------------|-----------------|--------------------------------|
| (A) Electromotive force | (C) Rich        | (E) Theoretical air fuel ratio |
| (B) Air fuel ratio      | (D) Lean        | (F) Comparative voltage        |
| (1) Atmosphere          | (2) Exhaust gas | (3) Electromotive force        |

#### 3. ENABLE CONDITION

| Secondary Parameters                                  | Enable Conditions |
|-------------------------------------------------------|-------------------|
| Conditions for carrying out the sub feedback learning | Completed         |
| Continuous time when all conditions are established   | $\geq 1$ s        |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously when the vehicle is idling or running at a constant speed of 80 km/h (50 MPH) or more.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria        | Threshold Value |
|-----------------------------|-----------------|
| Sub feedback learning value | < -0.035        |

**Time Needed for Diagnosis:** 5 s × 1 time(s)

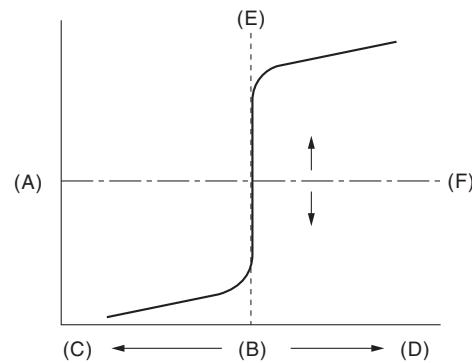
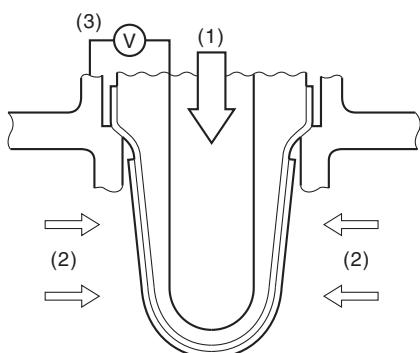
**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria        | Threshold Value |
|-----------------------------|-----------------|
| Sub feedback learning value | ≥ -0.035 + 0    |



**Time Needed for Diagnosis:** 5 s

### EI: DTC P2097 POST CATALYST FUEL TRIM SYSTEM TOO RICH (BANK 1)

#### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of fuel system from the size of the sub feedback learning value. Sub feedback learning is being performed. When the learning value goes to the rich side, judge as NG.

#### 2. COMPONENT DESCRIPTION



EN-01696

|                         |                 |                                |
|-------------------------|-----------------|--------------------------------|
| (A) Electromotive force | (C) Rich        | (E) Theoretical air fuel ratio |
| (B) Air fuel ratio      | (D) Lean        | (F) Comparative voltage        |
| (1) Atmosphere          | (2) Exhaust gas | (3) Electromotive force        |

#### 3. ENABLE CONDITION

| Secondary Parameters                                  | Enable Conditions |
|-------------------------------------------------------|-------------------|
| Conditions for carrying out the sub feedback learning | Completed         |
| Continuous time when all conditions are established   | $\geq 1$ s        |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis continuously when the vehicle is idling or running at a constant speed of 80 km/h (50 MPH) or more.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria        | Threshold Value |
|-----------------------------|-----------------|
| Sub feedback learning value | $\geq 0.031$    |

**Time Needed for Diagnosis:** 5 s  $\times$  1 time(s)

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria        | Threshold Value |
|-----------------------------|-----------------|
| Sub feedback learning value | $< 0.031 + 0$   |

**Time Needed for Diagnosis:** 5 s

## EJ:DTC P2098 POST CATALYST FUEL TRIM SYSTEM TOO LEAN BANK 2

### 1. OUTLINE OF DIAGNOSIS

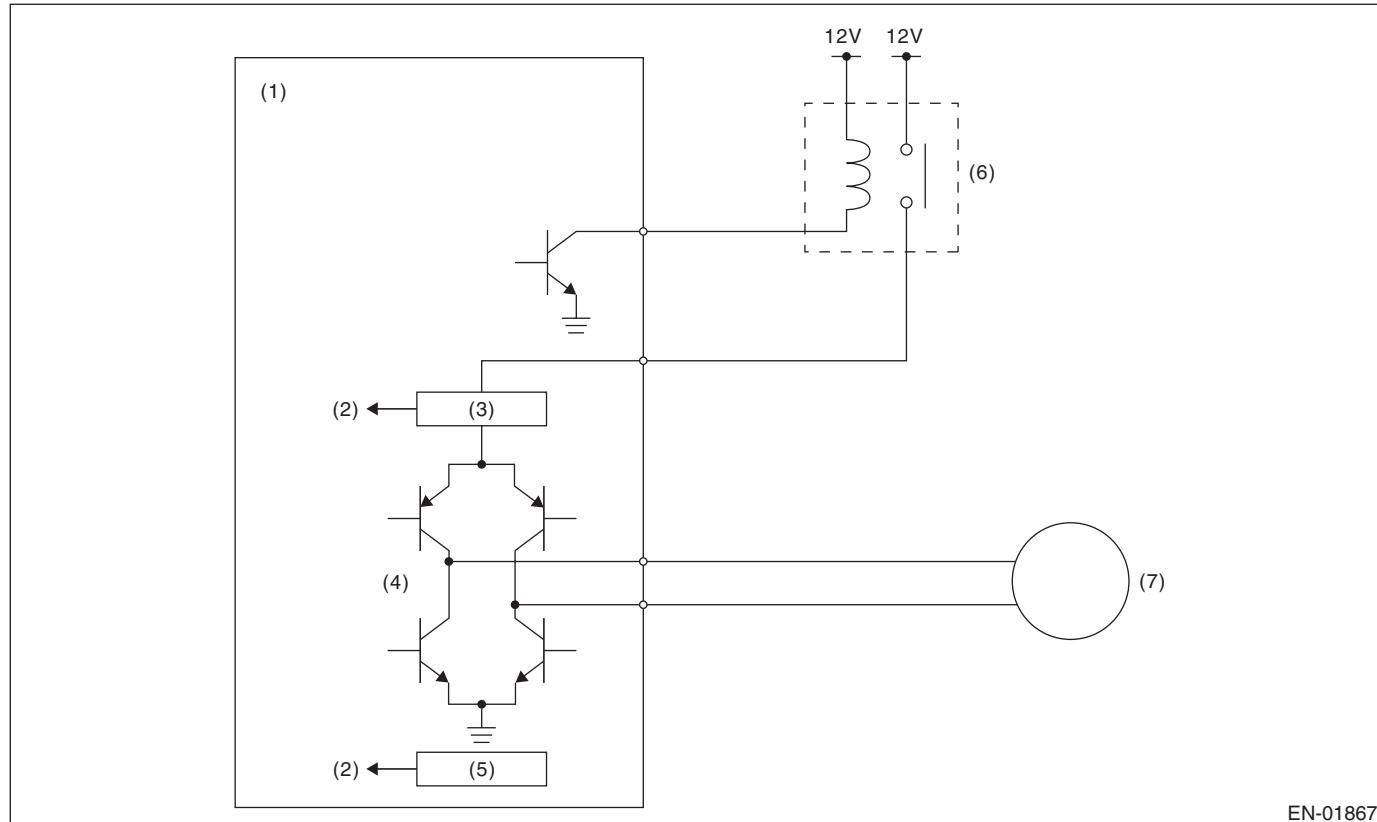
#### NOTE:

For the detection standard, refer to DTC P2096. <Ref. to GD(H6DO)-187, DTC P2096 POST CATALYST FUEL TRIM SYSTEM TOO LEAN (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

## EK:DTC P2099 POST CATALYST FUEL TRIM SYSTEM TOO RICH BANK 2

### 1. OUTLINE OF DIAGNOSIS

#### NOTE:


For the detection standard, refer to DTC P2097. <Ref. to GD(H6DO)-189, DTC P2097 POST CATALYST FUEL TRIM SYSTEM TOO RICH (BANK 1), Diagnostic Trouble Code (DTC) Detecting Criteria.>

### EL:DTC P2101 THROTTLE ACTUATOR CONTROL MOTOR CIRCUIT RANGE/ PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when the motor current becomes large or drive circuit is heated.

#### 2. COMPONENT DESCRIPTION



|                                   |                                   |                                       |
|-----------------------------------|-----------------------------------|---------------------------------------|
| (1) Engine control module (ECM)   | (4) Drive circuit                 | (6) Electronic throttle control relay |
| (2) Detecting circuit             | (5) Temperature detection circuit | (7) Motor                             |
| (3) Overcurrent detection circuit |                                   |                                       |

#### 3. ENABLE CONDITION

| Secondary Parameters                         | Enable Conditions |
|----------------------------------------------|-------------------|
| Under control of electronic throttle control | ON                |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

Judge as OK and clear the NG when the malfunction criteria below are met.

##### Judgement Value

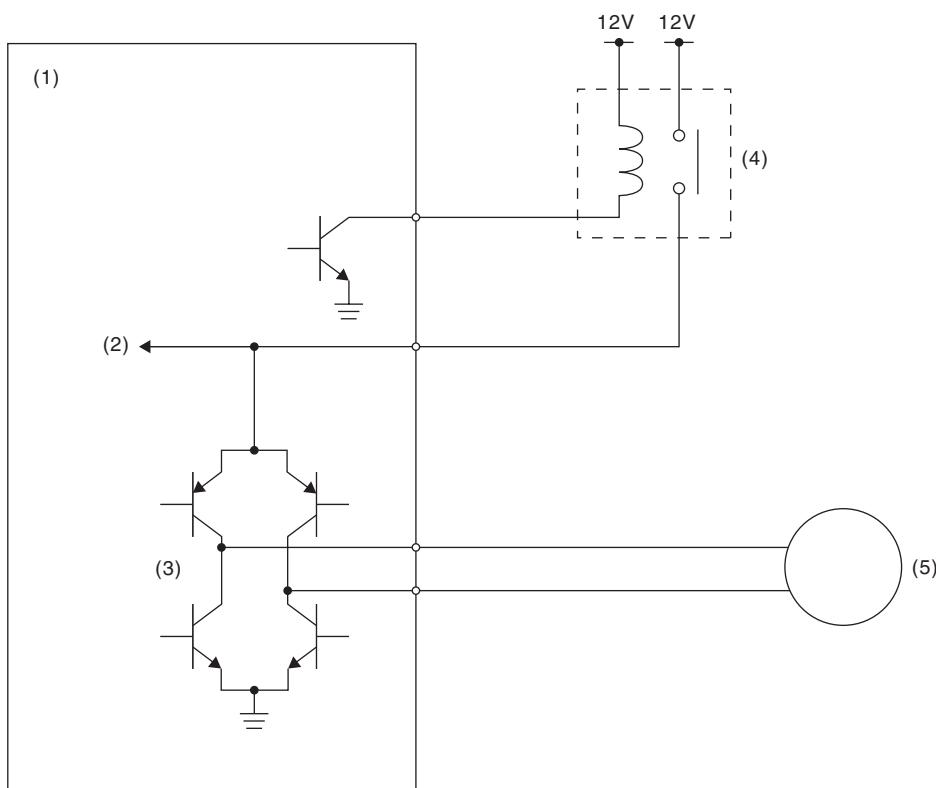
| Malfunction Criteria            | Threshold Value                                      |
|---------------------------------|------------------------------------------------------|
| Motor current                   | $\leq 8$ A                                           |
| Drive circuit inner temperature | $\leq 175^{\circ}\text{C}$ ( $347^{\circ}\text{F}$ ) |

##### Time Needed for Diagnosis:

- 500 milliseconds (For NG)
- 2000 milliseconds (For OK)

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

# Diagnostic Trouble Code (DTC) Detecting Criteria


## GENERAL DESCRIPTION

### EM:DTC P2102 THROTTLE ACTUATOR CONTROL MOTOR CIRCUIT LOW

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when the electronic throttle control power is not supplied even when ECM sets the electronic throttle control relay to ON.

#### 2. COMPONENT DESCRIPTION



EN-01868

(1) Engine control module (ECM)  
(2) Voltage detection circuit

(3) Drive circuit  
(4) Electronic throttle control relay

(5) Motor

#### 3. ENABLE CONDITION

| Secondary Parameters                     | Enable Conditions |
|------------------------------------------|-------------------|
| Electronic throttle control relay output | ON                |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

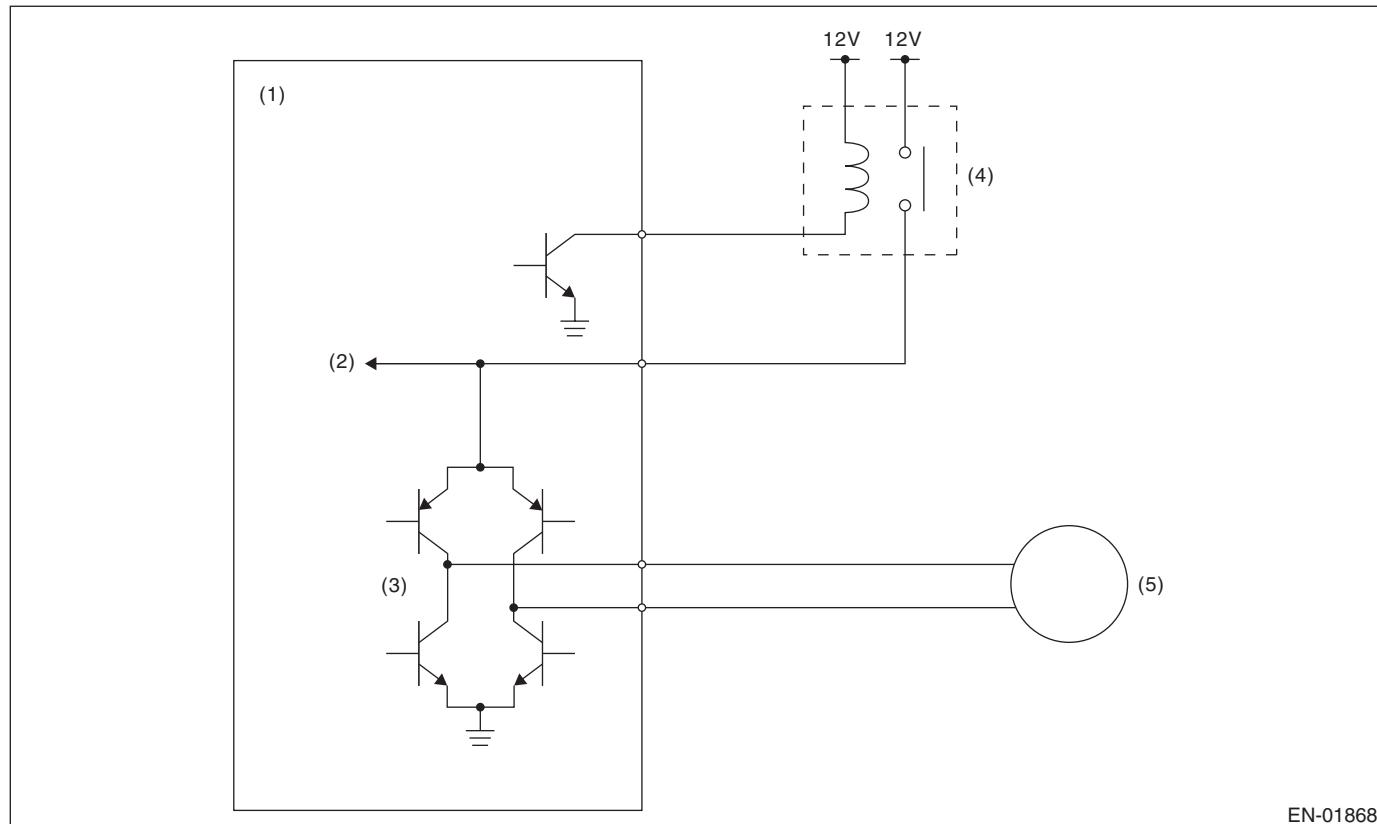
Judge as OK and clear the NG when the malfunction criteria below are met.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Motor power voltage  | $\geq 5$ V      |

##### Time Needed for Diagnosis:

- 400 milliseconds (For NG)
- 2000 milliseconds (For OK)


**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

### EN:DTC P2103 THROTTLE ACTUATOR CONTROL MOTOR CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when the electronic throttle control power is supplied even when ECM sets the electronic throttle control relay to OFF.

#### 2. COMPONENT DESCRIPTION



(1) Engine control module (ECM)  
 (2) Voltage detection circuit

(3) Drive circuit  
 (4) Electronic throttle control relay

(5) Motor

#### 3. ENABLE CONDITION

| Secondary Parameters                     | Enable Conditions |
|------------------------------------------|-------------------|
| Electronic throttle control relay output | OFF               |

#### 4. GENERAL DRIVING CYCLE

- When ignition switch ON → OFF
- Ignition switch OFF → ON (Only after clearing memory)

#### 5. DIAGNOSTIC METHOD

Judge as OK and clear the NG when the malfunction criteria below are met.

##### Judgement Value

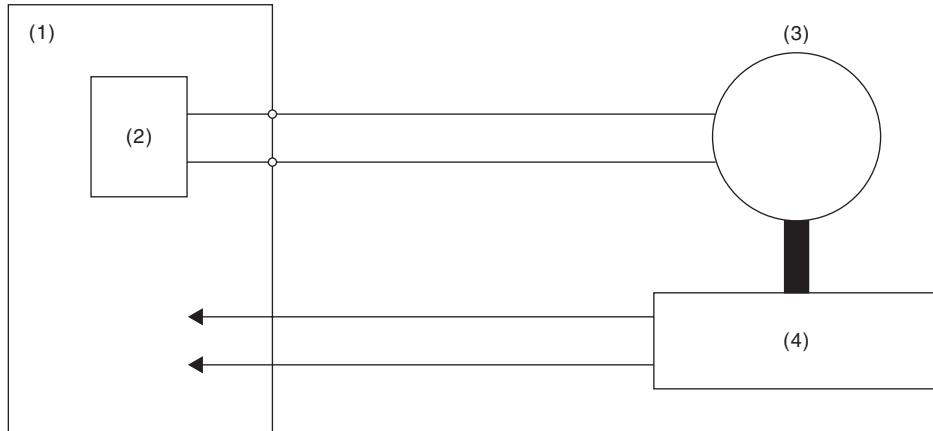
| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Motor power voltage  | $\leq 5$ V      |

##### Time Needed for Diagnosis:

- 600 milliseconds (For NG)
- 400 milliseconds (For OK)

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

# Diagnostic Trouble Code (DTC) Detecting Criteria


## GENERAL DESCRIPTION

### EO:DTC P2109 THROTTLE/PEDAL POSITION SENSOR “A” MINIMUM STOP PERFORMANCE

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when full close point learning cannot be conducted or abnormal value is detected.

#### 2. COMPONENT DESCRIPTION



EN-01869

(1) Engine control module (ECM)  
(2) Drive circuit

(3) Motor

(4) Throttle position sensor

#### 3. ENABLE CONDITION

| Secondary Parameters                      | Enable Conditions |
|-------------------------------------------|-------------------|
| Ignition switch                           | ON → OFF          |
| Ignition switch (only after clear memory) | OFF → ON          |

#### 4. GENERAL DRIVING CYCLE

Perform the diagnosis at full closed point learning.

#### 5. DIAGNOSTIC METHOD

Judge as OK and clear the NG when the malfunction criteria below are met.

##### Judgement value 1

| Malfunction Criteria                                             | Threshold Value   |
|------------------------------------------------------------------|-------------------|
| Main throttle full closed point learning position when IG is ON  | 10.127° — 19.872° |
| Main throttle full closed point learning position when IG is OFF | 10.127° — 19.872° |

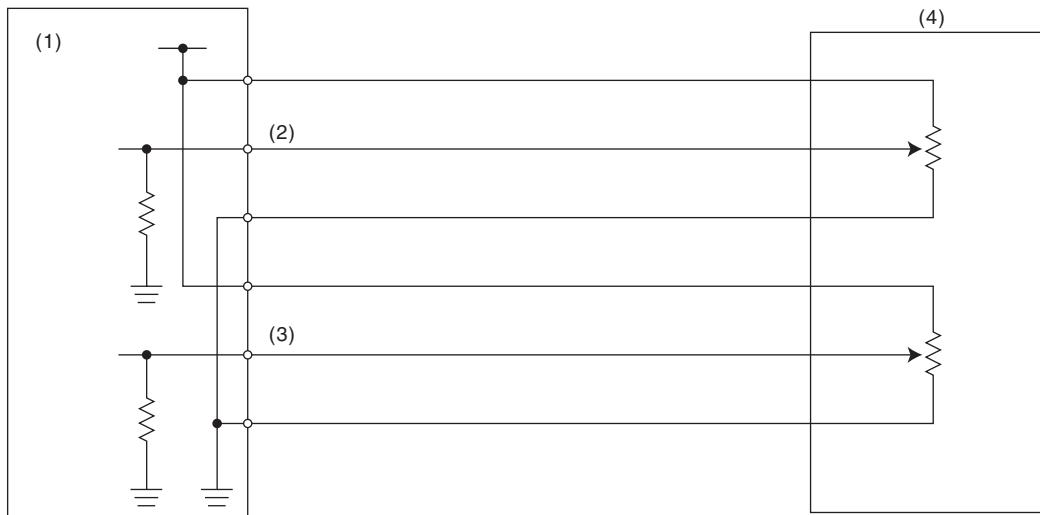
**Time Needed for Diagnosis:** 8 milliseconds

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### Judgement value 2

| Malfunction Criteria                                                     | Threshold Value    |
|--------------------------------------------------------------------------|--------------------|
| Throttle opening angle when the IG is ON – Throttle full closed position | $\geq 1.683^\circ$ |

**Time Needed for Diagnosis:** 80 milliseconds


**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

## EP:DTC P2122 THROTTLE/PEDAL POSITION SENSOR/SWITCH "D" CIRCUIT LOW INPUT

## 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of accelerator pedal position sensor 1.  
Judge as NG if out of specification.

## 2. COMPONENT DESCRIPTION



EN-01861

(1) Engine control module (ECM)      (3) Accelerator pedal position sensor      (4) Accelerator pedal position sensor  
(2) Accelerator pedal position sensor  
1 signal

### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | < 0.217 V       |

**Time Needed for Diagnosis:** 100 ms

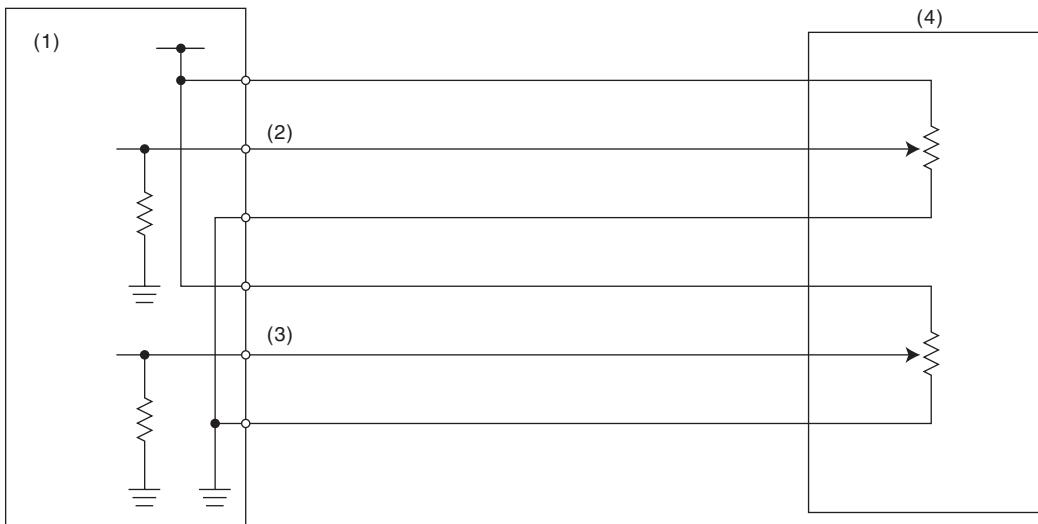
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | $\geq 0.217$ V  |


**Time Needed for Diagnosis:** 100 ms

### EQ:DTC P2123 THROTTLE/PEDAL POSITION SENSOR/SWITCH “D” CIRCUIT HIGH INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of accelerator pedal position sensor 1.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01861

(1) Engine control module (ECM) (3) Accelerator pedal position sensor  
(2) Accelerator pedal position sensor (4) Accelerator pedal position sensor  
1 signal 2 signal

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | $\geq 4.783$ V  |

**Time Needed for Diagnosis:** 32 ms

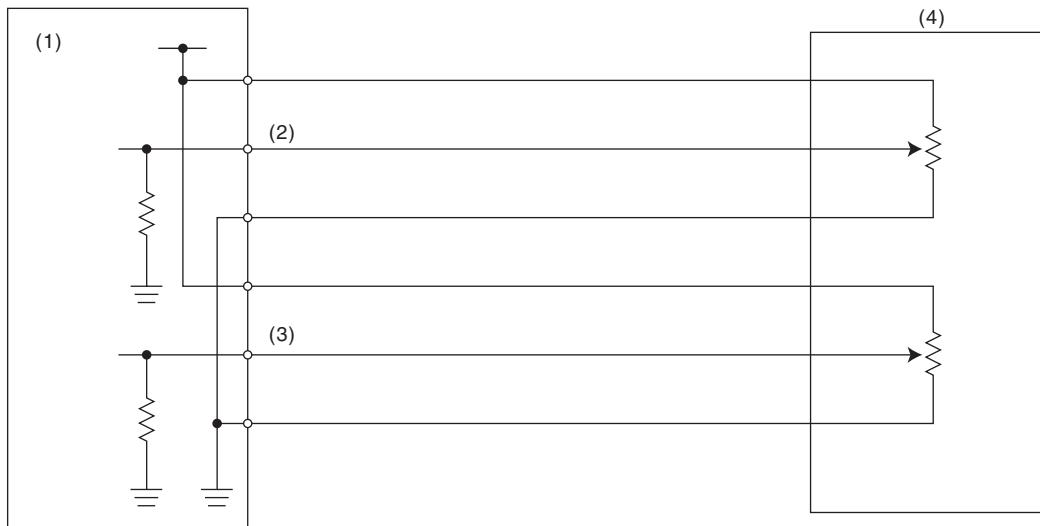
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 1 input voltage | $< 4.783$ V     |


**Time Needed for Diagnosis:** 32 ms

### ER:DTC P2127 THROTTLE/PEDAL POSITION SENSOR/SWITCH “E” CIRCUIT LOW INPUT

#### 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of accelerator pedal position sensor 2.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION



EN-01861

(1) Engine control module (ECM) (3) Accelerator pedal position sensor  
(2) Accelerator pedal position sensor 2 signal (4) Accelerator pedal position sensor  
1 signal

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | < 0.217 V       |

**Time Needed for Diagnosis:** 100 ms

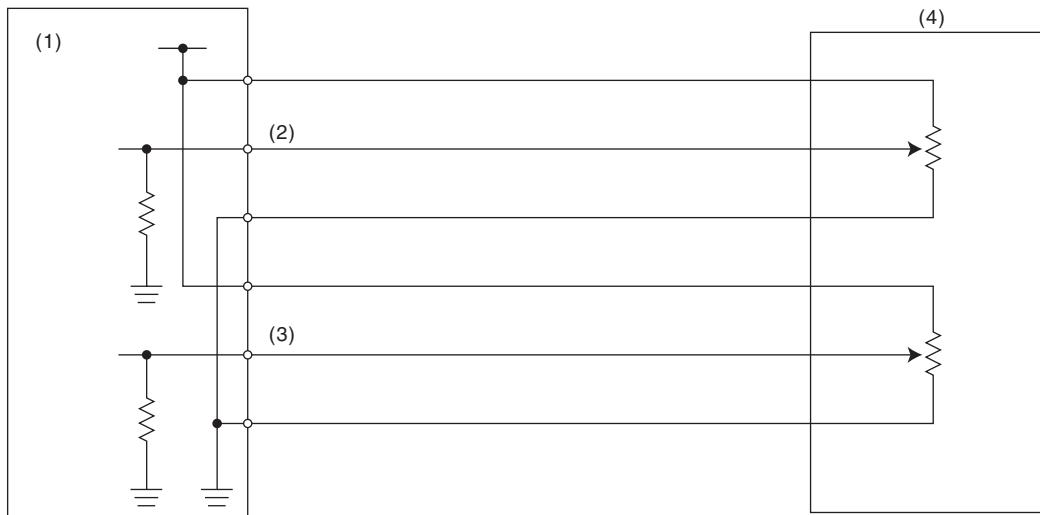
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | $\geq 0.217$ V  |


**Time Needed for Diagnosis:** 100 ms

## **ES:DTC P2128 THROTTLE/PEDAL POSITION SENSOR/SWITCH "E" CIRCUIT HIGH INPUT**

## 1. OUTLINE OF DIAGNOSIS

Detect the open or short circuit of accelerator pedal position sensor 2.  
Judge as NG if out of specification.

## 2. COMPONENT DESCRIPTION



EN-01861

(1) Engine control module (ECM)      (3) Accelerator pedal position sensor      (4) Accelerator pedal position sensor  
(2) Accelerator pedal position sensor      2 signal  
1 signal

### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | $\geq 4.783$ V  |

**Time Needed for Diagnosis:** 100 ms

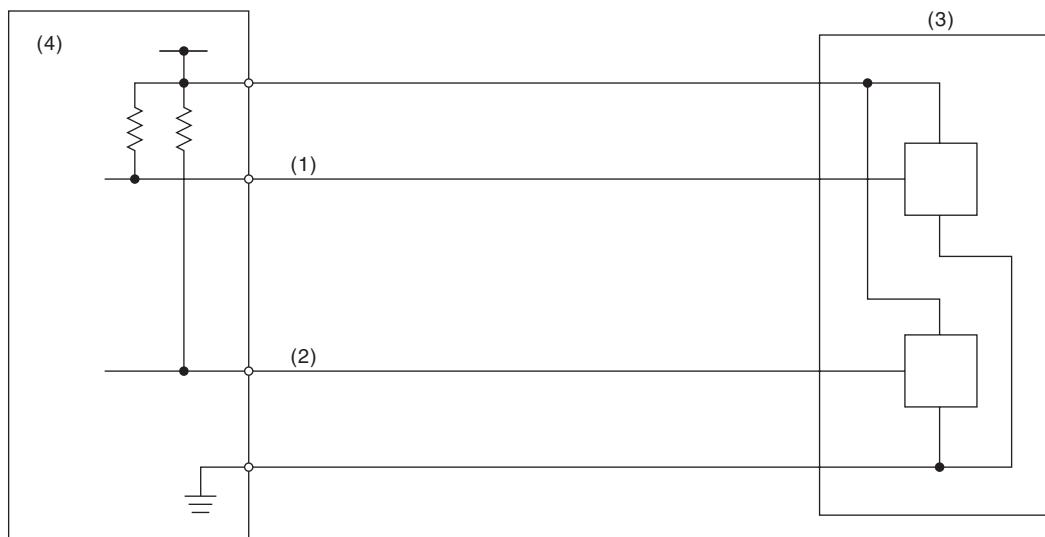
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria   | Threshold Value |
|------------------------|-----------------|
| Sensor 2 input voltage | $< 4.783$ V     |


**Time Needed for Diagnosis:** 100 ms

### ET:DTC P2135 THROTTLE/PEDAL POSITION SENSOR/SWITCH “A”/“B” VOLTAGE CORRELATION

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when the signal level of throttle position sensor 1 is different from the throttle position sensor 2.

#### 2. COMPONENT DESCRIPTION



EN-01859

(1) Throttle position sensor 1 signal  
(2) Throttle position sensor 2 signal

(3) Throttle position sensor

(4) Engine control module (ECM)

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                  | Threshold Value  |
|---------------------------------------|------------------|
| Signal difference between two sensors | > Value from Map |

#### Map

|                                                     |                                |                                   |                               |                                 |                       |
|-----------------------------------------------------|--------------------------------|-----------------------------------|-------------------------------|---------------------------------|-----------------------|
| Throttle position sensor 1<br>opening angle (°) = d | $0^\circ \leq d < 2.125^\circ$ | $2.125^\circ \leq d < 4.25^\circ$ | $4.25^\circ \leq d < 9^\circ$ | $9^\circ \leq d < 31.625^\circ$ | $31.625^\circ \leq d$ |
| Sensor output difference<br>(°)                     | $5.15^\circ$                   | $6.15^\circ$                      | $8.28^\circ$                  | $10.4^\circ$                    | $12.4^\circ$          |

**Time Needed for Diagnosis:** 212 ms

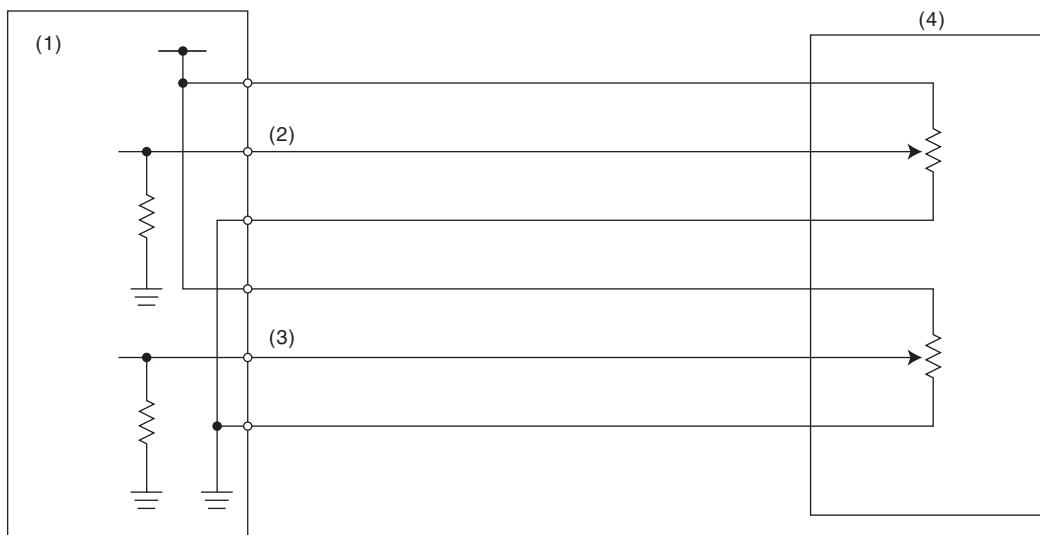
**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                  | Threshold Value       |
|---------------------------------------|-----------------------|
| Signal difference between two sensors | $\leq$ Value from Map |


**Time Needed for Diagnosis:** 24 ms

### EU:DTC P2138 THROTTLE/PEDAL POSITION SENSOR/SWITCH “D”/“E” VOLTAGE CORRELATION

#### 1. OUTLINE OF DIAGNOSIS

Judge as NG when the signal level of throttle position sensor 1 is different from the throttle position sensor 2.

#### 2. COMPONENT DESCRIPTION



EN-01861

(1) Engine control module (ECM) (3) Accelerator pedal position sensor  
(2) Accelerator pedal position sensor 2 signal (4) Accelerator pedal position sensor  
1 signal

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| Ignition switch      | ON                |
| Battery voltage      | $\geq 6$ V        |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                  | Threshold Value  |
|---------------------------------------|------------------|
| Signal difference between two sensors | > Value from Map |

#### Map

|                                                     |                              |                                |                              |                            |                  |
|-----------------------------------------------------|------------------------------|--------------------------------|------------------------------|----------------------------|------------------|
| Throttle position sensor 1<br>opening angle (°) = d | $0^\circ \leq d < 0.6^\circ$ | $0.6^\circ \leq d < 1.2^\circ$ | $1.2^\circ \leq d < 2^\circ$ | $2^\circ \leq d < 4^\circ$ | $4^\circ \leq d$ |
| Sensor output difference<br>(°)                     | 1.465 °                      | 1.597 °                        | 1.663 °                      | 2.455 °                    | 3.116 °          |

**Time Needed for Diagnosis:** 116 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                  | Threshold Value       |
|---------------------------------------|-----------------------|
| Signal difference between two sensors | $\leq$ Value from Map |

**Time Needed for Diagnosis:** 116 ms

## EV:DTC P2227 BAROMETRIC PRESSURE CIRCUIT RANGE/PERFORMANCE

### 1. OUTLINE OF DIAGNOSIS

Detect the malfunction of barometric pressure sensor output property.

Judge as NG when the barometric pressure sensor output is largely different from the intake manifold pressure at engine start.

### 2. COMPONENT DESCRIPTION

The barometric pressure sensor is built into the ECM.

### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions  |
|----------------------|--------------------|
| Engine speed         | < 300 rpm          |
| Vehicle speed        | < 1 km/h (0.6 MPH) |

### 4. GENERAL DRIVING CYCLE

Perform the diagnosis once at ignition switch ON.

### 5. DIAGNOSTIC METHOD

#### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

#### Judgement Value

| Malfunction Criteria                                                | Threshold Value                 |
|---------------------------------------------------------------------|---------------------------------|
| Barometric pressure – Intake manifold pressure                      | ≥ 26.7 kPa (200 mmHg, 7.9 inHg) |
| Intake manifold pressure at engine start – Intake manifold pressure | < 1.3 kPa (9.99 mmHg, 0.4 inHg) |

**Time Needed for Diagnosis:** 328 ms

**Malfunction Indicator Light Illumination:** Illuminates when malfunction occurs in 2 continuous driving cycles.

#### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

#### Judgement Value

| Malfunction Criteria                           | Threshold Value                 |
|------------------------------------------------|---------------------------------|
| Barometric pressure – Intake manifold pressure | < 26.7 kPa (200 mmHg, 7.9 inHg) |

**Time Needed for Diagnosis:** 262 ms

# Diagnostic Trouble Code (DTC) Detecting Criteria

## GENERAL DESCRIPTION

---

### EW:DTC P2228 BAROMETRIC PRESSURE CIRCUIT LOW

#### 1. OUTLINE OF DIAGNOSIS

Detect the open/short circuit of the barometric pressure sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION

The barometric pressure sensor is built into the ECM.

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | < 1.707 V       |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | ≥ 1.707 V       |

**Time Needed for Diagnosis:** Less than 1 second

### EX:DTC P2229 BAROMETRIC PRESSURE CIRCUIT HIGH

#### 1. OUTLINE OF DIAGNOSIS

Detect the open/short circuit of the barometric pressure sensor.  
Judge as NG if out of specification.

#### 2. COMPONENT DESCRIPTION

The barometric pressure sensor is built into the ECM.

#### 3. ENABLE CONDITION

| Secondary Parameters | Enable Conditions |
|----------------------|-------------------|
| None                 |                   |

#### 4. GENERAL DRIVING CYCLE

Always perform the diagnosis continuously.

#### 5. DIAGNOSTIC METHOD

##### • Abnormality Judgement

If the duration of time while the following conditions are met is longer than the time indicated, judge as NG.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $\geq 4.234$ V  |

**Time Needed for Diagnosis:** 500 ms

**Malfunction Indicator Light Illumination:** Illuminates as soon as a malfunction occurs.

##### • Normality Judgement

Judge as OK and clear the NG if the continuous time while the following conditions are established is more than the predetermined time.

##### Judgement Value

| Malfunction Criteria | Threshold Value |
|----------------------|-----------------|
| Output voltage       | $< 4.234$ V     |

**Time Needed for Diagnosis:** Less than 1 second

# **Diagnostic Trouble Code (DTC) Detecting Criteria**

## **GENERAL DESCRIPTION**

---

**TRANSMISSION SECTION****CONTROL SYSTEMS****CS****AUTOMATIC TRANSMISSION****5AT****AUTOMATIC TRANSMISSION  
(DIAGNOSTICS)****5AT(diag)**

This service manual has been prepared to provide SUBARU service personnel with the necessary information and data for the correct maintenance and repair of SUBARU vehicles.

This manual includes the procedures for maintenance, disassembling, reassembling, inspection and adjustment of components and diagnostics for guidance of experienced mechanics.

Please peruse and utilize this manual fully to ensure complete repair work for satisfying our customers by keeping their vehicle in optimum condition. When replacement of parts during repair work is needed, be sure to use SUBARU genuine parts.

All information, illustration and specifications contained in this manual are based on the latest product information available at the time of publication approval.



# CONTROL SYSTEMS

CS

---

|                                                      | Page |
|------------------------------------------------------|------|
| 1. General Description .....                         | 2    |
| 2. AT Shift Lock Control System .....                | 5    |
| 3. Select Lever .....                                | 20   |
| 4. Select Cable .....                                | 28   |
| 5. AT Shift Lock Solenoid and "P" Range Switch ..... | 31   |
| 6. Body Integrated Unit .....                        | 34   |
| 7. General Diagnostic Table .....                    | 35   |