

BRAKES

4-4

	Page
S SPECIFICATIONS AND SERVICE DATA	2
1. Specifications.....	2
2. Service Data	5
C COMPONENT PARTS	6
1. Front Disc Brake.....	6
2. Rear Drum Brake	7
3. Master Cylinder	8
4. Brake Booster.....	9
5. ABS System	10
6. Parking Brake	12
W SERVICE PROCEDURE	13
1. Front Disc Brake.....	13
2. Rear Drum Brake	18
3. Master Cylinder	24
4. Brake Booster.....	26
5. Brake Hose	32
6. Parking Brake Lever	33
7. Parking Brake Cable	34
8. Air Bleeding	36
9. Brake Fluid Replacement.....	38
10. Proportioning Valve.....	39
11. ABS Sensor	41
12. Hydraulic Unit for ABS System	46
13. ABS Control Module.....	56
14. G Sensor for ABS System.....	57
15. Brake Hose and Pipe AIRBAG	59
K DIAGNOSTICS	62
1. Entire Brake System.....	62

PRECAUTION FOR SUPPLEMENTAL RESTRAINT SYSTEM "AIRBAG"

The Supplemental Restraint System "Airbag" helps to reduce the risk or severity of injury to the driver in a frontal collision.

The Supplemental Restraint System consists of an airbag module (located in the center of the steering wheel), sensors, a control module, warning light, wiring harness and roll connector.

Information necessary to service the safety is included in the "5-5. SUPPLEMENTAL RESTRAINT SYSTEM" of this Service Manual.

WARNING:

- To avoid rendering the Airbag system inoperative, which could lead to personal injury or death in the event of a severe frontal collision, all maintenance must be performed by an authorized SUBARU dealer.
- Improper maintenance, including incorrect removal and installation of the Airbag system, can lead to personal injury caused by unintentional activation of the Airbag system.
- All Airbag system electrical wiring harnesses and connectors are covered with yellow outer insulation. Do not use electrical test equipment on any circuit related to the Supplemental Restraint System "Airbag".

1. Specifications

A: COUPE

	Engine (cc)	1800	2200	
	Driving system	AWD	AWD	
		Brighton	Brighton	L
Front brake	Type	Disc (Floating type, ventilated)		
	Effective disc diameter mm (in)	210 (8.27)		
	Disc thickness x outer diameter mm (in)	24 x 260 (0.94 x 10.24)		
	Effective cylinder diameter mm (in)	57.15 (2.2500)		
	Pad dimensions (length x width x thickness) mm (in)	112.4 x 44.3 x 11.0 (4.43 x 1.744 x 0.433)		
	Clearance adjustment	Automatic adjustment		
Rear brake	Type	Drum (Leading-trailing type)		
	Effective drum diameter mm (in)	228.6 (9)		
	Effective cylinder diameter mm (in)	19.05 (0.7500)		
	Lining dimensions (length x width x thickness) mm (in)	218.8 x 35.0 x 4.1 (8.61 x 1.378 x 0.161)		
	Clearance adjustment	Automatic adjustment		
Parking brake	Type	Mechanical on rear brake drums		
	Effective drum diameter mm (in)	228.6 (9)		
	Lining dimensions (length x width x thickness) mm (in)	218.8 x 35.0 x 4.1 (8.61 x 1.378 x 0.161)		
	Clearance adjustment	Automatic adjustment		
Master cylinder	Type	Tandem		
	Effective diameter mm (in)	23.81 (0.9374)		
	Reservoir type	Sealed type		
	Brake fluid reservoir capacity cm ³ (cu in)	190 (11.59)		
Brake booster	Type	Vacuum suspended		
	Effective diameter mm (in)	230 (9.06)		
Proportioning valve	Split point kPa(kg/cm ² , psi)	2,942 (30.0, 427)		
	Reducing ratio	0.4		
Brake line		Dual circuit system		
ABS		—		

B: SEDAN

	Engine (cc)	2200
	Driving system	AWD
		L
Front brake	Type	Disc (Floating type, ventilated)
	Effective disc diameter mm (in)	210 (8.27)
	Disc thickness x outer diameter mm (in)	24 x 260 (0.94 x 10.24)
	Effective cylinder diameter mm (in)	57.15 (2.2500)
	Pad dimensions (length x width x thickness) mm (in)	112.4 x 44.3 x 11.0 (4.43 x 1.744 x 0.433)
	Clearance adjustment	Automatic adjustment
Rear brake	Type	Drum (Leading-trailing type)
	Effective drum diameter mm (in)	228.6 (9)
	Effective cylinder diameter mm (in)	19.05 (0.7500)
	Lining dimensions (length x width x thickness) mm (in)	218.8 x 35.0 x 4.1 (8.61 x 1.378 x 0.161)
	Clearance adjustment	Automatic adjustment
Parking brake	Type	Mechanical on rear brake drums
	Effective drum diameter mm (in)	228.6 (9)
	Lining dimensions (length x width x thickness) mm (in)	218.8 x 35.0 x 4.1 (8.61 x 1.378 x 0.161)
	Clearance adjustment	Automatic adjustment
Master cylinder	Type	Tandem
	Effective diameter mm (in)	23.81 (0.9374)
	Reservoir type	Sealed type
	Brake fluid reservoir capacity cm ³ (cu in)	190 (11.59)
Brake booster	Type	Vacuum suspended
	Effective diameter mm (in)	230 (9.06)
Proportioning valve	Split point kPa (kg/cm ² , psi)	2,942 (30.0, 427)
	Reducing ratio	0.4
Brake line		Dual circuit system
ABS		—

C: WAGON

	Engine (cc)	1800	2200
	Driving system	AWD	AWD
		Brighton	L OUTBACK
Front brake	Type	Disc (Floating type, ventilated)	
	Effective disc diameter mm (in)	210 (8.27)	
	Disc thickness x outer diameter mm (in)	24 x 260 (0.94 x 10.24)	
	Effective cylinder diameter mm (in)	57.15 (2.2500)	
	Pad dimensions (length x width x thickness) mm (in)	112.4 x 44.3 x 11.0 (4.43 x 1.744 x 0.433)	
	Clearance adjustment	Automatic adjustment	
Rear brake	Type	Drum (Leading-trailing type)	
	Effective drum diameter mm (in)	228.6 (9)	
	Effective cylinder diameter mm (in)	19.05 (0.7500)	
	Lining dimensions (length x width x thickness) mm (in)	218.8 x 35.0 x 4.1 (8.61 x 1.378 x 0.161)	
	Clearance adjustment	Automatic adjustment	
Parking brake	Type	Mechanical on rear brake drums	
	Effective drum diameter mm (in)	228.6 (9)	
	Lining dimensions (length x width x thickness) mm (in)	218.8 x 35.0 x 4.1 (8.61 x 1.378 x 0.161)	
	Clearance adjustment	Automatic adjustment	
Master cylinder	Type	Tandem	
	Effective diameter mm (in)	23.81 (0.9374)	25.40 (1)
	Reservoir type	Sealed type	
	Brake fluid reservoir capacity cm ³ (cu in)	190 (11.59)	
Brake booster	Type	Vacuum suspended	
	Effective diameter mm (in)	230 (9.06)	180 + 205 (7.09 + 8.07)
Proportioning valve	Split point kPa (kg/cm ² , psi)	2,942 (30.0, 427)	
	Reducing ratio	0.4	
Brake line		Dual circuit system	
ABS		—	STD

2. Service Data

ITEM		STANDARD	SERVICE LIMIT
Front brake	Pad thickness (including back metal)	17 mm (0.67 in)	7.5 mm (0.295 in)
	Disc thickness	24 mm (0.94 in)	22 mm (0.87 in)
	Disc run-out	—	0.075 mm (0.0030 in)
Rear brake (Drum type)	Inside diameter	228.6 mm (9 in)	230.6 mm (9.079 in)
	Lining thickness	4.1 mm (0.161 in)	1.5 mm (0.059 in)
Parking brake	Lever stroke	7 to 8 notches/196N (20 kg, 44 lb)	

			Without ABS	With ABS
Brake booster	Brake fluid pressure without engine running	Brake pedal force	Fluid pressure	
		147 N (15 kg, 33 lb)	785 kPa (8 kg/cm ² , 114 psi)	588 kPa (6 kg/cm ² , 85 psi)
		294 N (30kg, 66 lb)	2,158 kPa (22 kg/cm ² , 313 psi)	1,863 kPa (19 kg/cm ² , 270 psi)
	Brake fluid pressure with engine running and vacuum at 66.7 kPa (500 mmHg, 19.69 inHg)	147 N (15 kg, 33 lb)	5,492 kPa (56 kg/cm ² , 796 psi)	5,394 kPa (55 kg/cm ² , 782 psi)
		294 N (30kg, 66 lb)	8,434 kPa (86 kg/cm ² , 1,223 psi)	9,219 kPa (94 kg/cm ² , 1,337 psi)

A: RECOMMENDED BRAKE FLUID

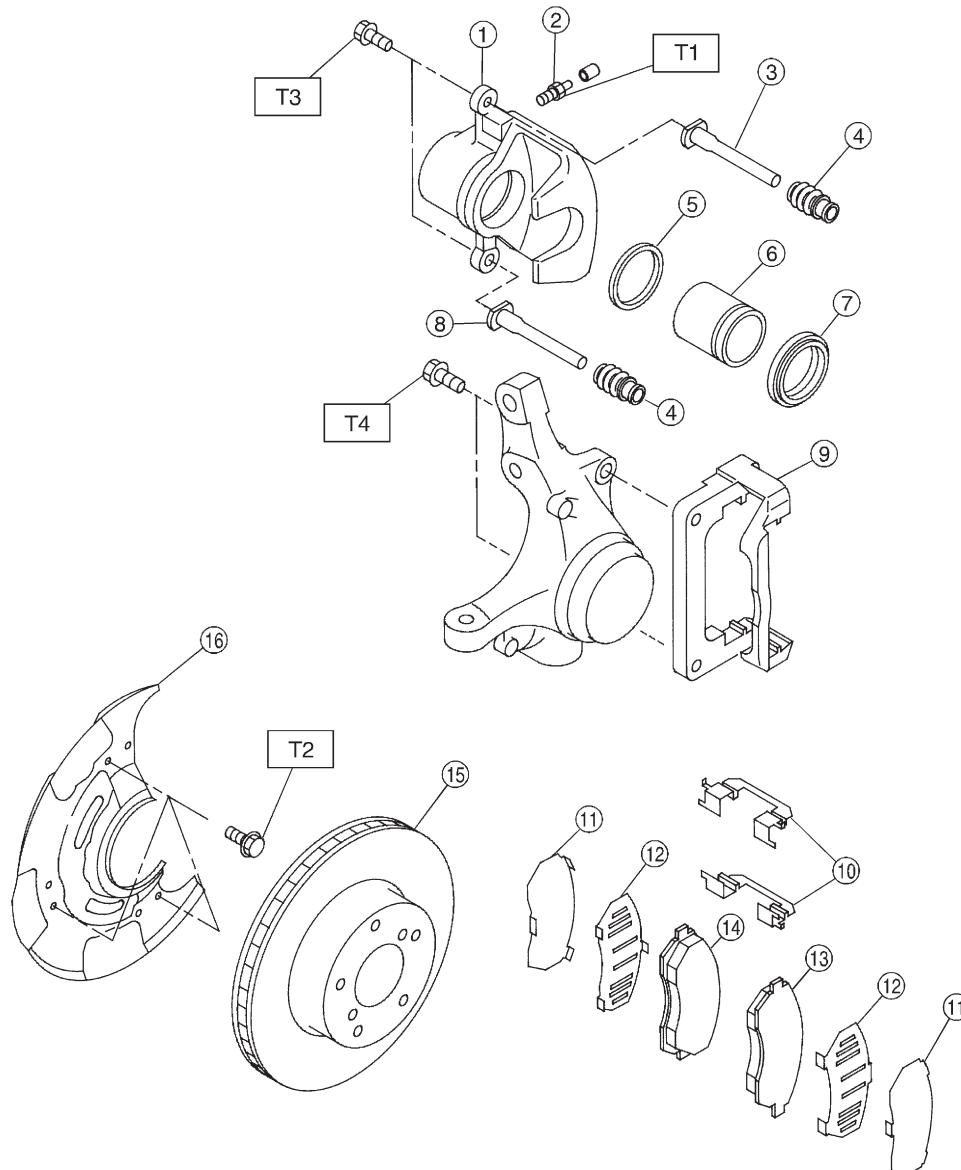
FMVSS No. 116, fresh DOT3 or 4 brake fluid

CAUTION:

- Avoid mixing brake fluid of different brands to prevent the fluid performance from degrading.
- When brake fluid is supplemented, be careful not to allow any dust into the reservoir.
- Use fresh DOT3 or 4 brake fluid when replacing or refilling the fluid.

B: BRAKE FLUID LEVEL INDICATOR

Reserve tank with level indicator:

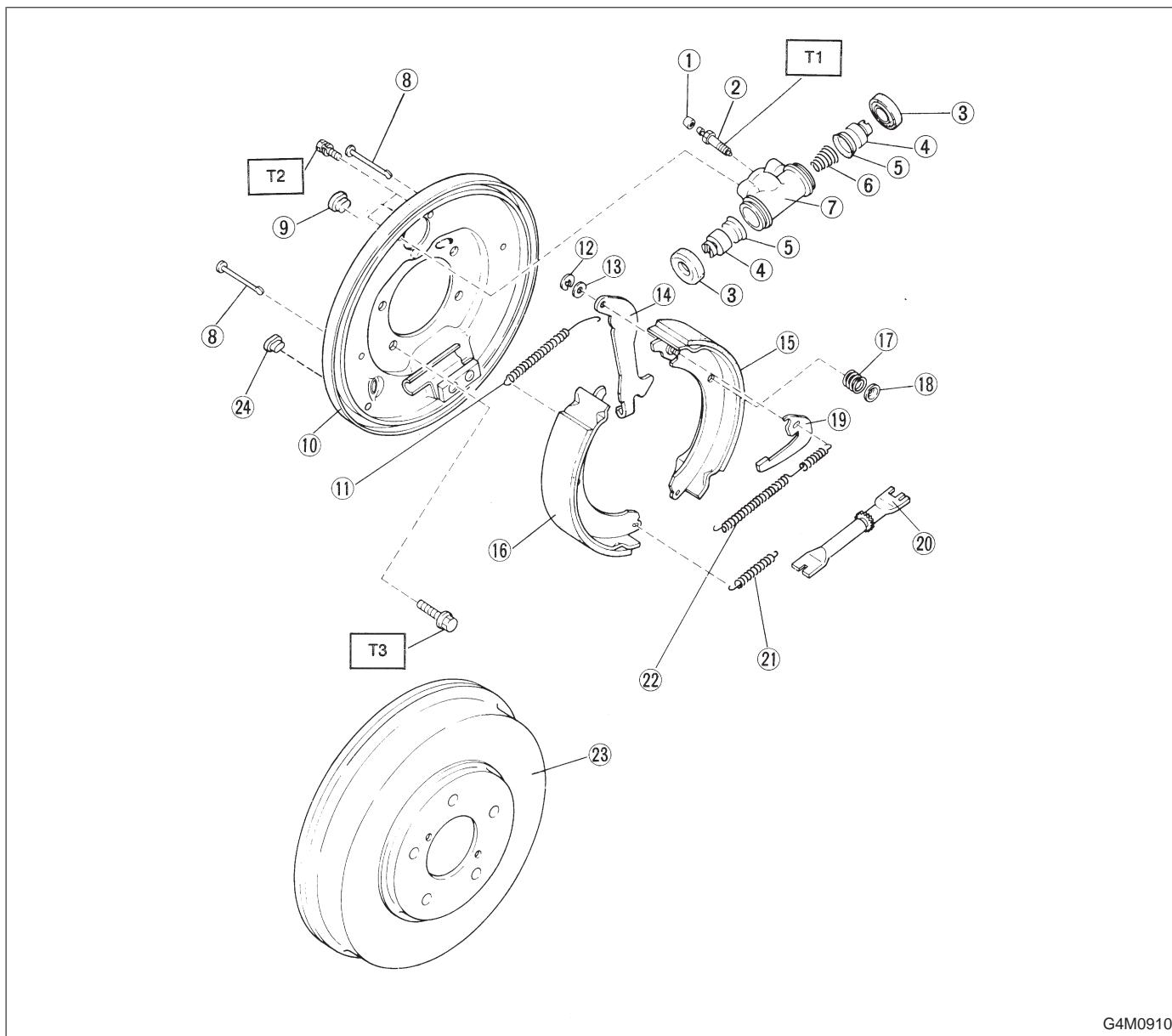

Residual fluid quantity at light ON

Approx. 80 cm³ (80cc, 4.88 cu in)

Tank capacity

190 cm³ (190cc, 11.59 cu in)

1. Front Disc Brake


B4M1208A

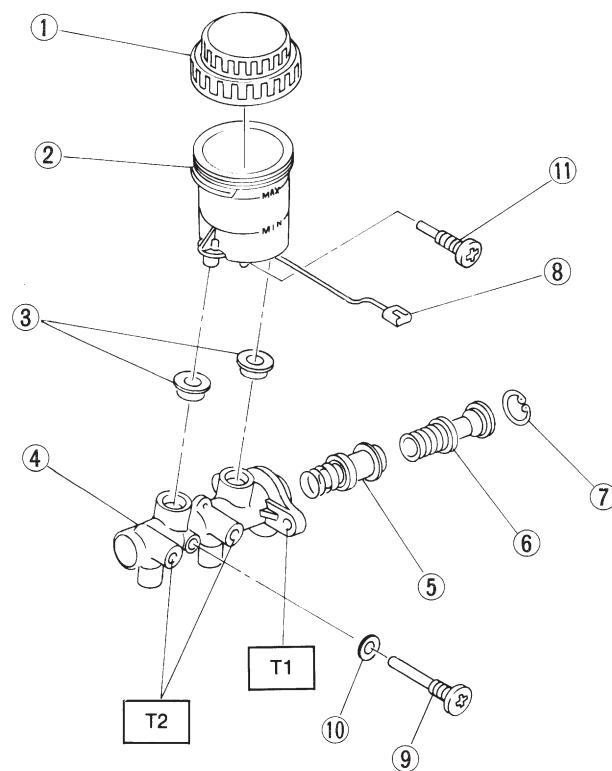
- ① Caliper body
- ② Air bleeder screw
- ③ Guide pin (Green)
- ④ Pin boot
- ⑤ Piston seal
- ⑥ Piston
- ⑦ Piston boot
- ⑧ Lock pin (Yellow)

- ⑨ Support
- ⑩ Pad clip
- ⑪ Outer shim
- ⑫ Inner shim
- ⑬ Pad (Outside)
- ⑭ Pad (Inside)
- ⑮ Disc rotor
- ⑯ Disc cover

Tightening torque: N·m (kg·m, ft·lb)T1: 8 ± 1 (0.8 ± 0.1 , 5.8 ± 0.7)T2: 18 ± 5 (1.8 ± 0.5 , 13.0 ± 3.6)T3: 37 ± 5 (3.8 ± 0.5 , 27.5 ± 3.6)T4: 78 ± 10 (8.0 ± 1.0 , 58 ± 7)

2. Rear Drum Brake

G4M0910


- ① Air bleeder cap
- ② Air bleeder screw
- ③ Boot
- ④ Piston
- ⑤ Cup
- ⑥ Spring
- ⑦ Wheel cylinder body
- ⑧ Pin
- ⑨ Plug
- ⑩ Back plate

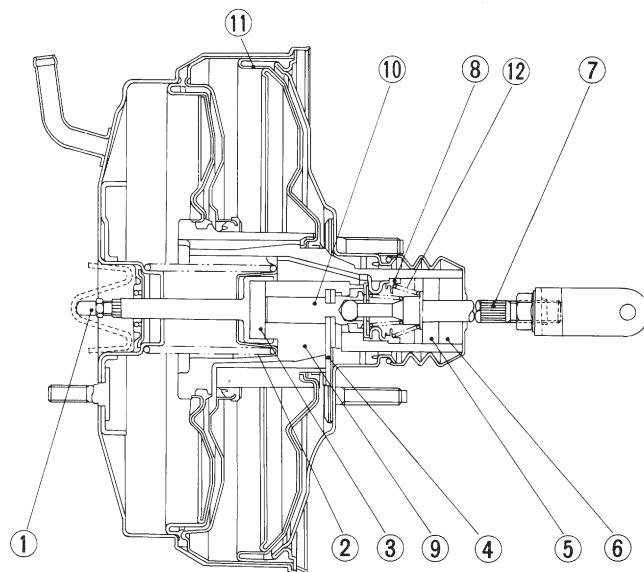
- ⑪ Upper shoe return spring
- ⑫ Retainer
- ⑬ Washer
- ⑭ Parking brake lever
- ⑮ Brake shoe (Trailing)
- ⑯ Brake shoe (Leading)
- ⑰ Shoe hold-down spring
- ⑱ Cup
- ⑲ Adjusting lever
- ⑳ Adjuster

- ㉑ Lower shoe return spring
- ㉒ Adjusting spring
- ㉓ Drum
- ㉔ Plug

Tightening torque: N·m (kg·m, ft·lb)T1: 8 ± 1 (0.8 ± 0.1 , 5.8 ± 0.7)T2: 10 ± 2 (1.0 ± 0.2 , 7.2 ± 1.4)T3: 52 ± 6 (5.3 ± 0.6 , 38.3 ± 4.3)

3. Master Cylinder

G4M0354

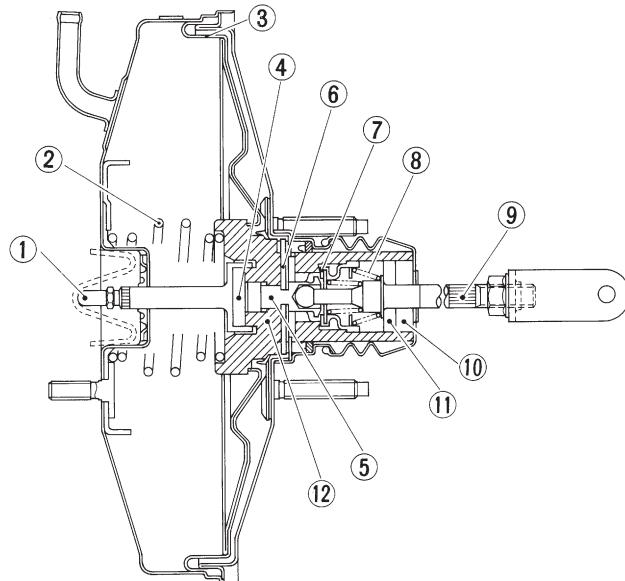

- ① Cap
- ② Reserve tank
- ③ Seal
- ④ Cylinder body
- ⑤ Secondary piston
- ⑥ Primary piston

- ⑦ C-ring
- ⑧ Level indicator ASSY
- ⑨ Supply valve stopper (With ABS)
- ⑩ Gasket (With ABS)
- ⑪ Reservoir stopper bolt

Tightening torque: N·m (kg·m, ft·lb)T1: 14 ± 4 (1.4±0.4, 10.1±2.9)T2: $14.7^{+3}_{-2.3}$
($1.5^{+0.3}_{-0.2}$, $10.8^{+2.2}_{-1.4}$)

4. Brake Booster

1. MODELS WITH ABS


G4M0355

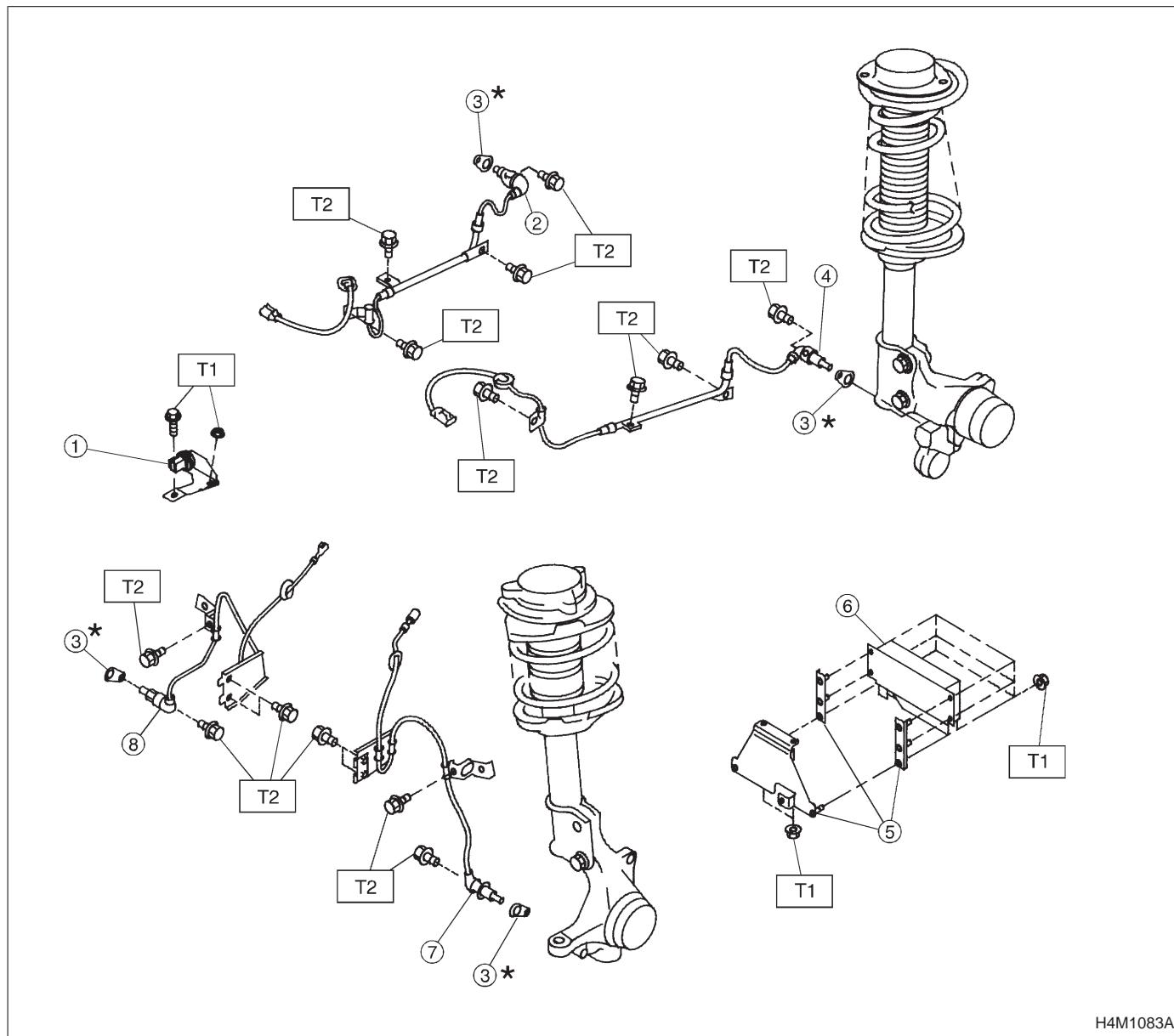
- ① Push rod
- ② Return spring
- ③ Reaction disc
- ④ Key

- ⑤ Filter
- ⑥ Silencer
- ⑦ Operating rod
- ⑧ Poppet valve

- ⑨ Valve body
- ⑩ Plunger valve
- ⑪ Diaphragm plate
- ⑫ Valve return spring

2. MODELS WITHOUT ABS

G4M0356

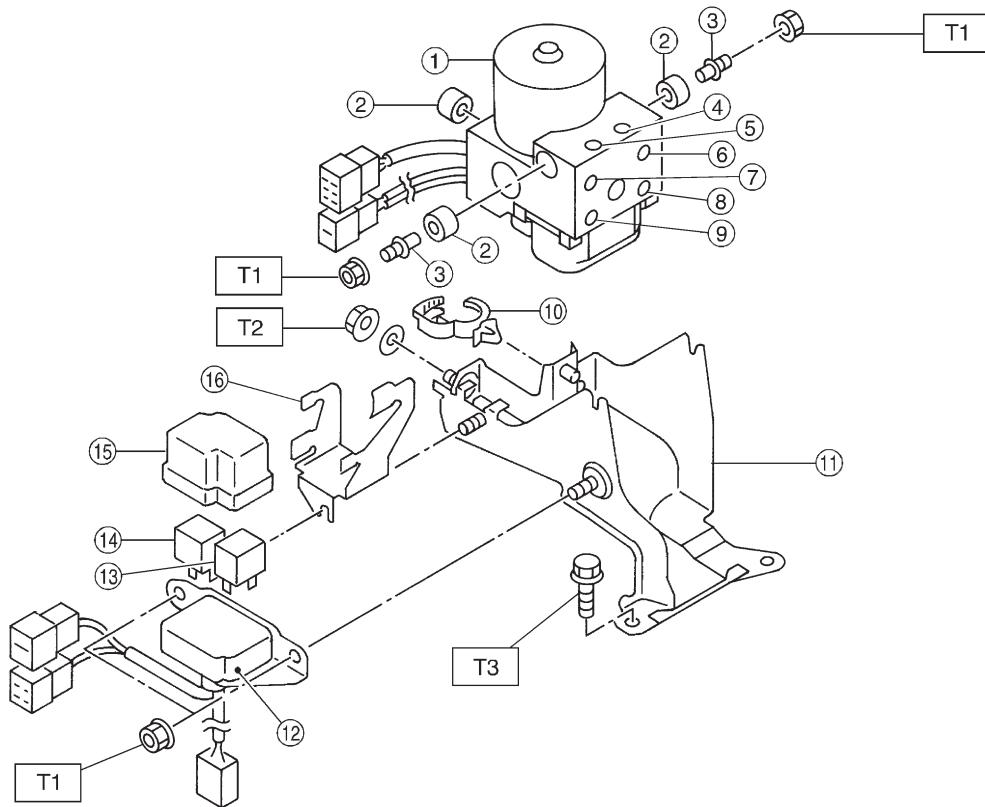

- ① Push rod
- ② Return spring
- ③ Diaphragm plate
- ④ Reaction disc

- ⑤ Plunger valve
- ⑥ Key
- ⑦ Poppet valve
- ⑧ Valve return spring

- ⑨ Operating rod
- ⑩ Silencer
- ⑪ Filter
- ⑫ Valve body

5. ABS System

A: SENSOR AND CONTROL MODULE

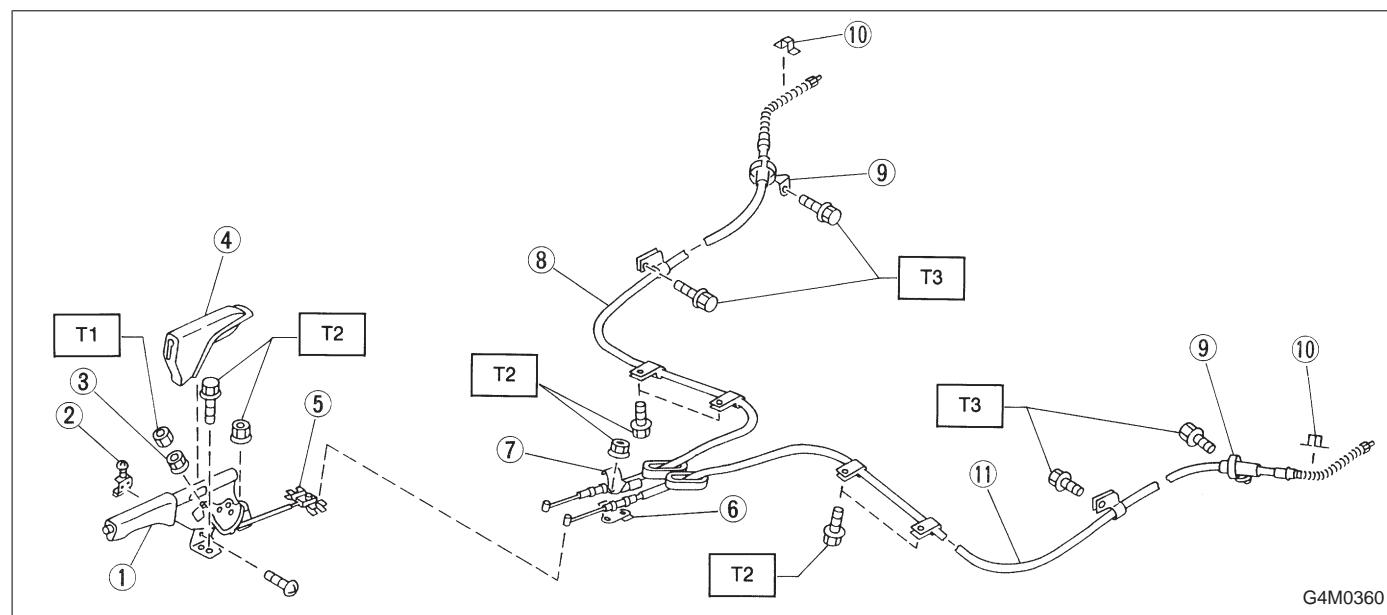

H4M1083A

- ① G sensor (AWD only)
- ② Rear ABS sensor RH
- ③ ABS spacer
- ④ Rear ABS sensor LH
- ⑤ Bracket

- ⑥ ABS control module
- ⑦ Front ABS sensor LH
- ⑧ Front ABS sensor RH

Tightening torque: N·m (kg·m, ft·lb)
 T1: 7.4 ± 2.0 (0.75±0.2, 5.4±1.4)
 T2: 32 ± 10 (3.3±1.0, 24±7)

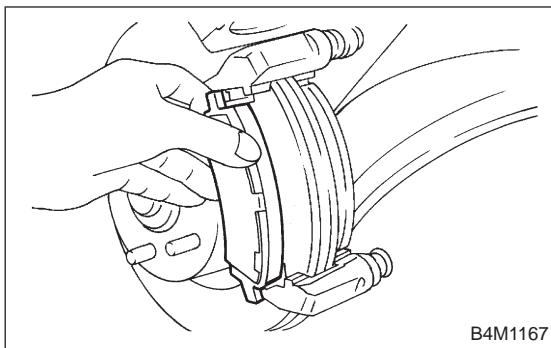
B: HYDRAULIC CONTROL UNIT



B4M0994A

① Hydraulic control unit	⑩ Cable clip
② Damper	⑪ Bracket
③ Stud bolt	⑫ Relay box
④ Rear-RH outlet	⑬ Motor relay
⑤ Rear-LH outlet	⑭ Valve relay
⑥ Secondary inlet	⑮ Cap
⑦ Primary inlet	⑯ Connector bracket
⑧ Front-LH outlet	
⑨ Front-RH outlet	

Tightening torque: N·m (kg·m, ft·lb)T1: 18 ± 5 (1.8 ± 0.5 , 13.0 ± 3.6)T2: 29 ± 7 (3.0 ± 0.7 , 21.7 ± 5.1)T3: 32 ± 10 (3.3 ± 1.0 , 24 ± 7)


6. Parking Brake

- ① Parking brake lever
- ② Parking brake switch
- ③ Adjusting nut
- ④ Cover
- ⑤ Equalizer
- ⑥ Bracket

- ⑦ Clamp
- ⑧ Parking brake cable RH
- ⑨ Cable guide
- ⑩ Clamp
(Rear disc brake model only)
- ⑪ Parking brake cable LH

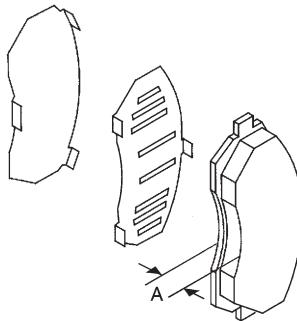
Tightening torque: N·m (kg·m, ft·lb)
T1: 5.9 ± 1.5 (0.60 ± 0.15 , 4.3 ± 1.1)
T2: 18 ± 5 (1.8 ± 0.5 , 13.0 ± 3.6)
T3: 32 ± 10 (3.3 ± 1.0 , 24 ± 7)

B4M1167

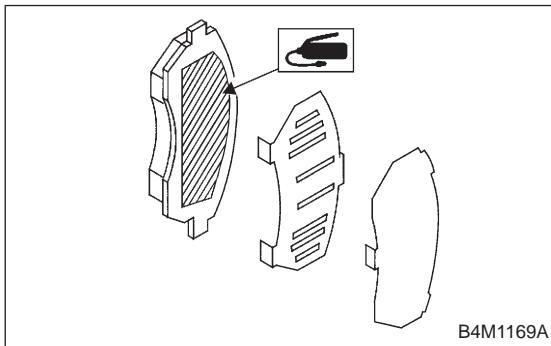
1. Front Disc Brake

A: ON-CAR SERVICE

1. PAD


- 1) Remove lock pin.
- 2) Raise caliper body.
- 3) Remove pad.

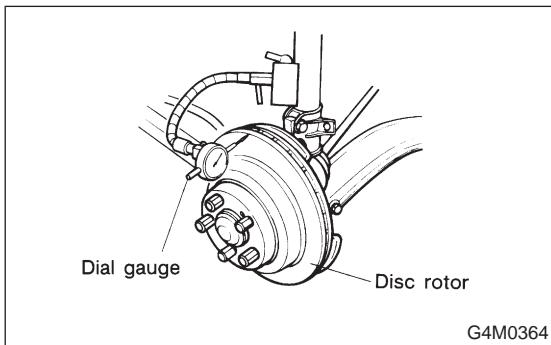
- 4) Check pad thickness A.


Pad thickness (including back metal) mm (in)	Standard value	17 (0.67)
	Wear limit	7.5 (0.295)

CAUTION:

- Always replace the pads for both the left and right wheels at the same time. Also replace pad clips if they are twisted or worn.
- A wear indicator is provided on the inner disc brake pad. If the pad wears down to such an extent that the end of the wear indicator contacts the disc rotor, a squeaking sound is produced as the wheel rotates. If this sound is heard, replace the pad.
- Replace pad if there is oil or grease on it.

B4M1168A



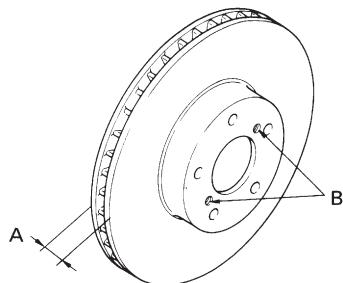
B4M1169A

- 5) Apply thin coat of PBC GREASE (Part No. 003607000) to the frictional portion between pad and pad clip.
- 6) Install pads on support.
- 7) Install caliper body on support.

NOTE:

If it is difficult to push piston during pad replacement, loosen air bleeder to facilitate work.

G4M0364

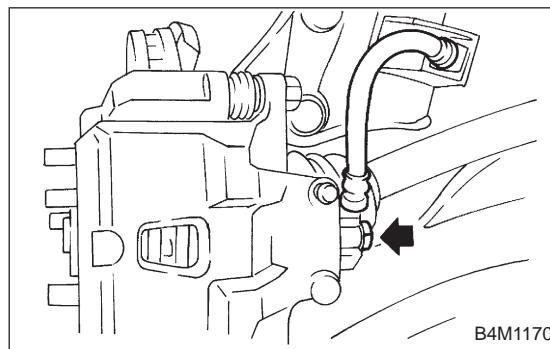

2. DISC ROTOR

- 1) Install disc rotor by tightening the five wheel nuts.
- 2) Set a dial gauge on the disc rotor. Turn disc rotor to check runout.

NOTE:

Make sure that dial gauge is set 5 mm (0.20 in) inward of rotor outer perimeter.

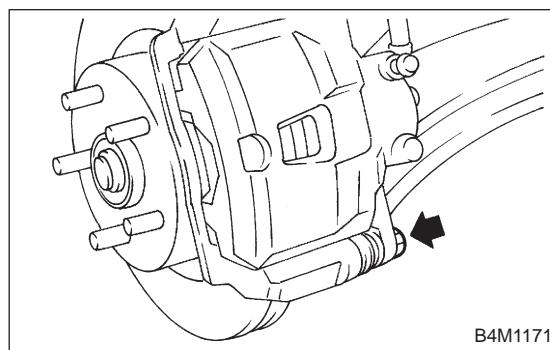
Disc rotor runout limit:
0.075 mm (0.0030 in)


G4M0365

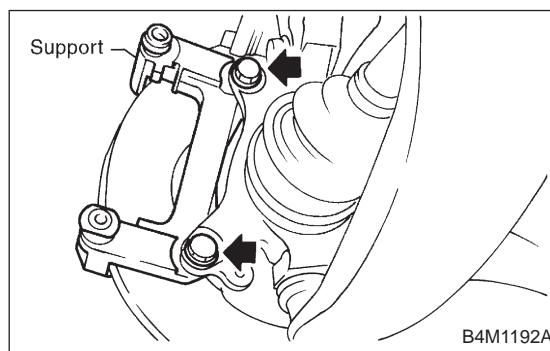
3) Measure disc rotor thickness.

NOTE:

Make sure that micrometer is set 5 mm (0.20 in) inward of rotor outer perimeter.


Disc rotor thickness A mm (in)	Standard value	Service limit	Disc outer dia. (10.24)
	24.0 (0.945)	22.0 (0.866)	260

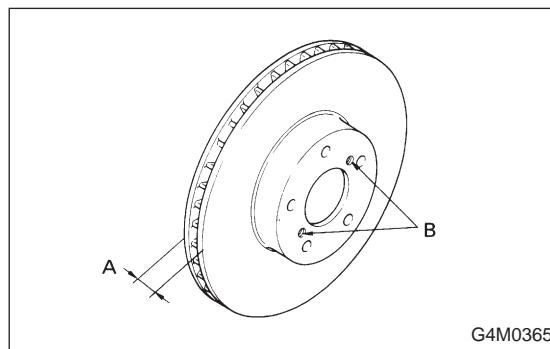
B4M1170


B: REMOVAL

1) Remove union bolt and disconnect brake hose from caliper body assembly.

B4M1171

2) Remove bolt securing lock pin to caliper body.
3) Raise caliper body and move it toward vehicle center to separate it from support.



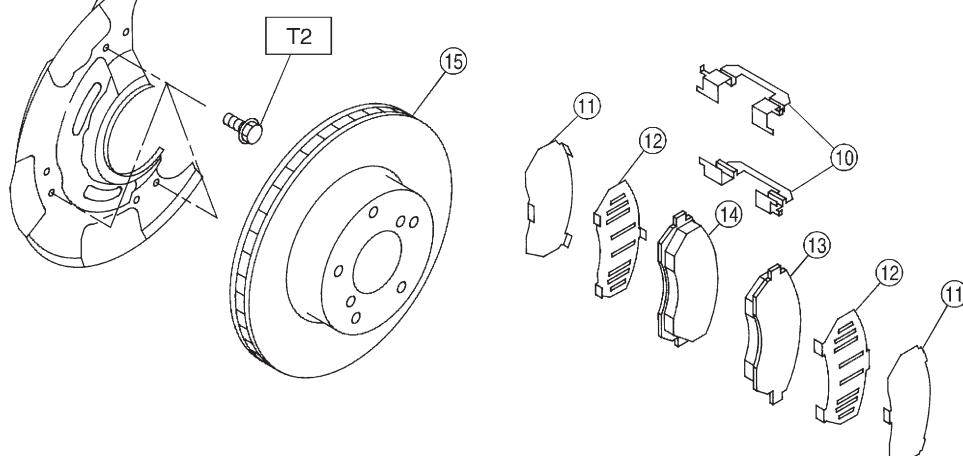
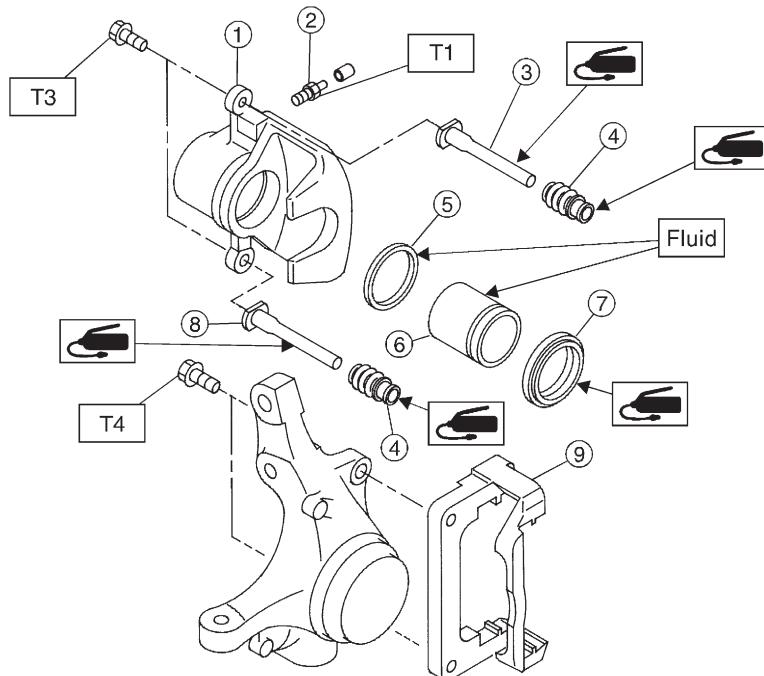
B4M1192A

4) Remove support from housing.

NOTE:

Remove support only when replacing it or the rotor. It need not be removed when servicing caliper body assembly.

G4M0365



5) Remove disc rotor from hub.

NOTE:

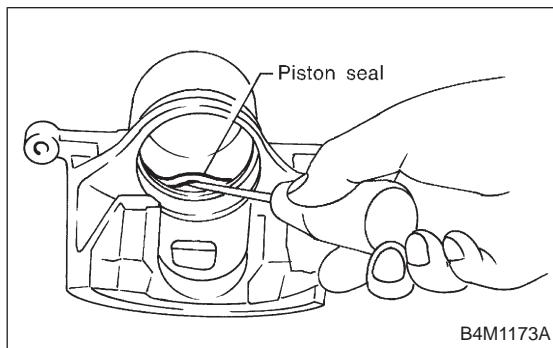
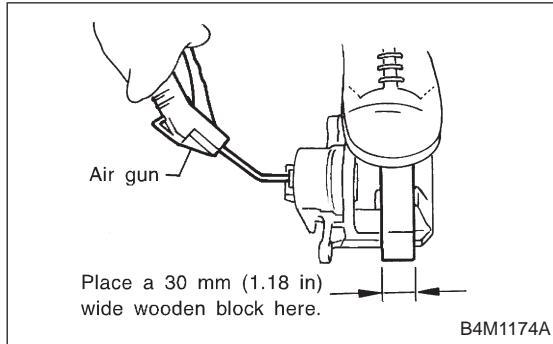
If disc rotor seizes up within hub, drive disc rotor out by installing an 8-mm bolt in holes B on the rotor.

6) Clean mud and foreign particles from caliper body assembly and support.

C: DISASSEMBLY

B4M1208B

- ① Caliper body
- ② Air bleeder screw
- ③ Guide pin (Green)
- ④ Pin boot
- ⑤ Piston seal
- ⑥ Piston
- ⑦ Piston boot
- ⑧ Lock pin (Yellow)



- ⑨ Support
- ⑩ Pad clip
- ⑪ Outer shim
- ⑫ Inner shim
- ⑬ Pad (Outside)
- ⑭ Pad (Inside)
- ⑮ Disc rotor
- ⑯ Disc cover

Tightening torque: N·m (kg·m, ft·lb)T1: 8 ± 1 (0.8 ± 0.1 , 5.8 ± 0.7)T2: 18 ± 5 (1.8 ± 0.5 , 13.0 ± 3.6)T3: 37 ± 5 (3.8 ± 0.5 , 27.5 ± 3.6)T4: 78 ± 10 (8.0 ± 1.0 , 58 ± 7)

- 1) Clean mud and foreign particles from caliper body assembly and support.

CAUTION:

Be careful not to allow foreign particles to enter inlet (at brake hose connector).

- 2) Gradually supply compressed air via caliper body brake hose to force piston out.

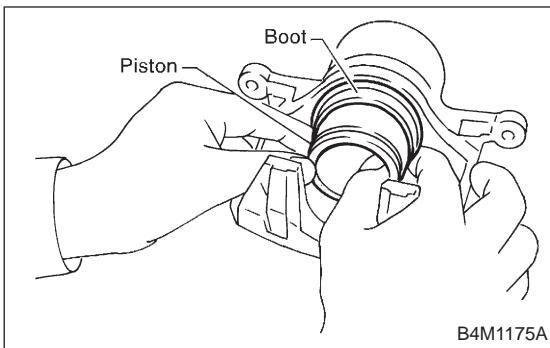
CAUTION:

- Place a wooden block as shown in Figure to prevent damage to piston.
- Do not apply excessively high-pressure.

- 3) Remove piston boot.

- 4) Remove piston seal from caliper body cylinder.
- 5) Remove guide pin and boot from caliper body.

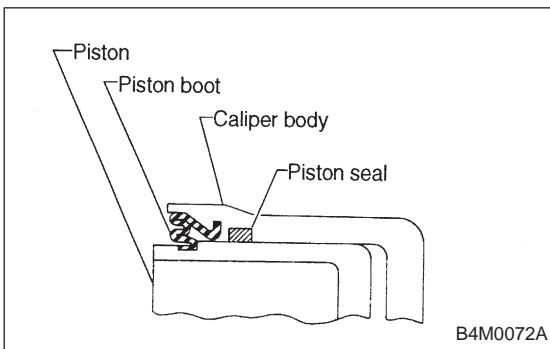
D: INSPECTION

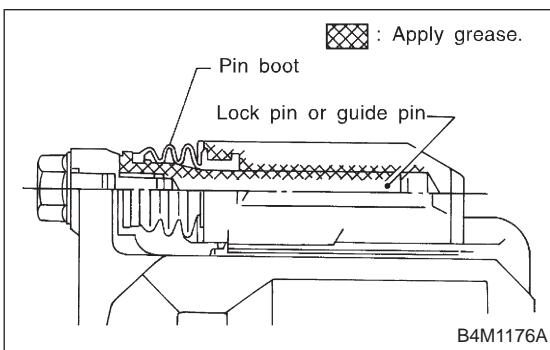

- 1) Repair or replace faulty parts.
- 2) Check caliper body and piston for uneven wear, damage or rust.
- 3) Check rubber parts for damage or deterioration.

E: ASSEMBLY

- 1) Clean caliper body interior using brake fluid.
- 2) Apply a coat of brake fluid to piston seal and fit piston seal in groove on caliper body.
- 3) Apply a coat of brake fluid to the entire inner surface of cylinder and outer surface of piston.
- 4) Apply a coat of specified grease to boot and fit in groove on ends of cylinder and install piston boot onto cylinder.

Grease:


NIGLUBE RX-2 (Part No. 003606000)


5) Insert piston into cylinder.

CAUTION:

Do not force piston into cylinder.

6) Position boot in grooves on cylinder and piston.

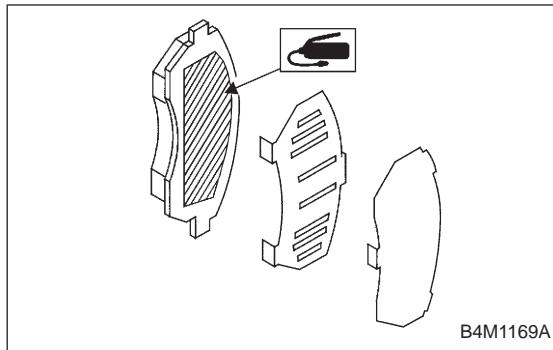
7) Apply a coat of specified grease to lock pin and guide pin outer surface, cylinder inner surface, and boot grooves.

Grease:

NIGLUBE RX-2 (Part No. 003606000)

8) Install lock and guide pin boot on support.

F: INSTALLATION


- 1) Install disc rotor on hub.
- 2) Install support on housing.

Tightening torque:

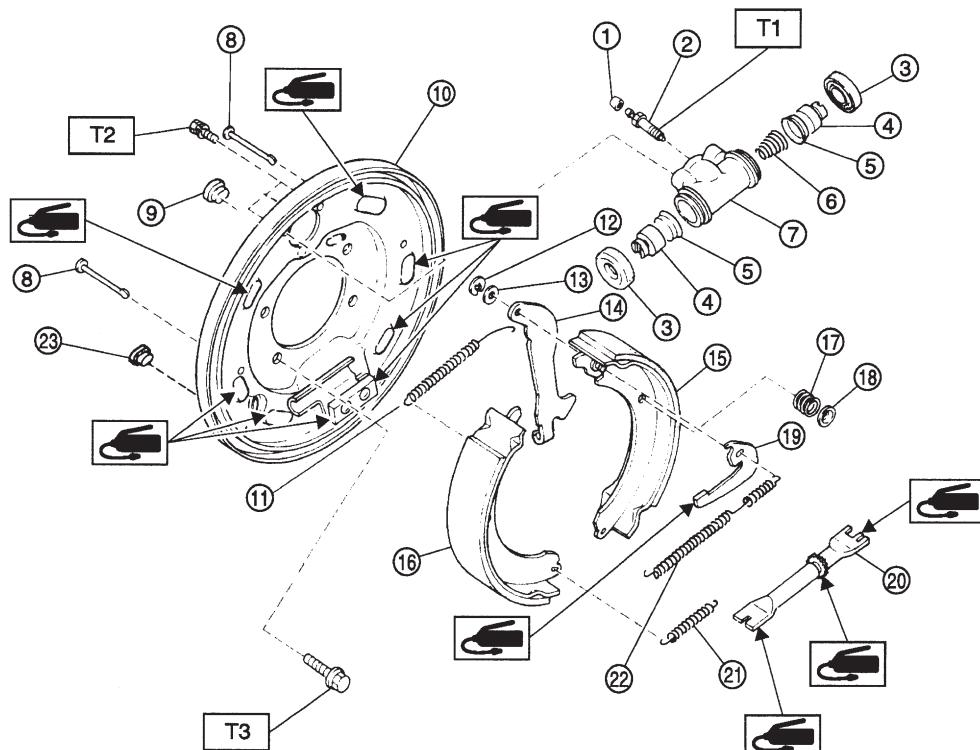
$78\pm10 \text{ N}\cdot\text{m}$ ($8\pm1 \text{ kg}\cdot\text{m}$, $58\pm7 \text{ ft-lb}$)

CAUTION:

- Always replace the pads for both the left and right wheels at the same time. Also replace pad clips if they are twisted or worn.
- A wear indicator is provided on the inner disc brake pad. If the pad wears down to such an extent that the end of the wear indicator contacts the disc rotor, a squeaking sound is produced as the wheel rotates. If this sound is heard, replace the pad.
- When replacing the pad, replace pads of the right and left wheels at the same time.

B4M1169A

- 3) Apply thin coat of PBC GREASE (Part No. 003607000) to the frictional portion between pad and pad clip.
- 4) Install pads, rubber coated shim and stainless shim on support.
- 5) Install caliper body on support.


Tightening torque: $39 \pm 5 \text{ N}\cdot\text{m} (4 \pm 0.5 \text{ kg}\cdot\text{m}, 28.9 \pm 3.6 \text{ ft-lb})$

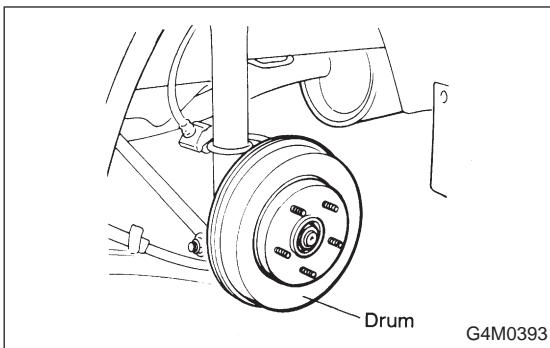
- 6) Connect brake hose.

Tightening torque: $18 \pm 3 \text{ N}\cdot\text{m} (1.8 \pm 0.3 \text{ kg}\cdot\text{m}, 13.0 \pm 2.2 \text{ ft-lb})$ **CAUTION:**

Replace brake hose gaskets with new ones.

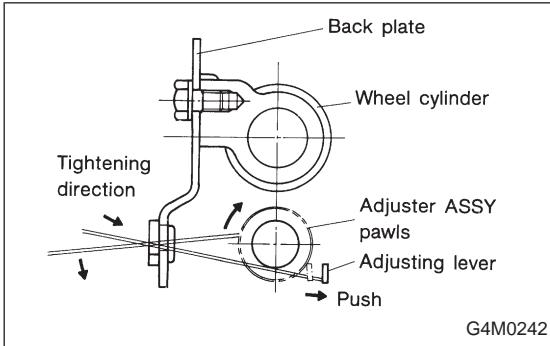
- 7) Bleed air from brake system.

2. Rear Drum Brake**A: REMOVAL**


B4M0075A

- ① Air bleeder cap
- ② Air bleeder screw
- ③ Boot
- ④ Piston
- ⑤ Cup
- ⑥ Spring
- ⑦ Wheel cylinder body
- ⑧ Pin
- ⑨ Plug
- ⑩ Back plate

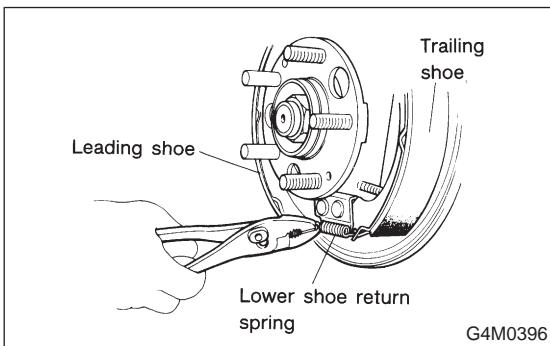
- ⑪ Upper shoe return spring
- ⑫ Retainer
- ⑬ Washer
- ⑭ Parking brake lever
- ⑮ Brake shoe (Trailing)
- ⑯ Brake shoe (Leading)
- ⑰ Shoe hold-down spring
- ⑱ Cup
- ⑲ Adjusting lever
- ⑳ Adjuster


- ㉑ Lower shoe return spring
- ㉒ Adjusting spring
- ㉓ Plug

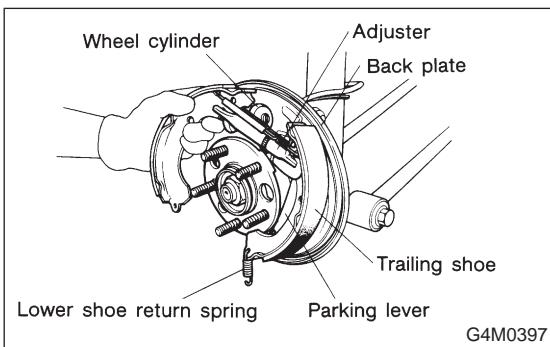
Tightening torque: N·m (kg·m, ft·lb)T1: $8 \pm 1 (0.8 \pm 0.1, 5.8 \pm 0.7)$ T2: $10 \pm 2 (1.0 \pm 0.2, 7.2 \pm 1.4)$ T3: $52 \pm 6 (5.3 \pm 0.6, 38.3 \pm 4.3)$

1. BRAKE DRUM AND SHOE

- 1) Loosen wheel nuts, jack-up vehicle, support it with rigid racks, and remove wheel.
- 2) Release parking brake.
- 3) Remove brake drum from brake assembly.

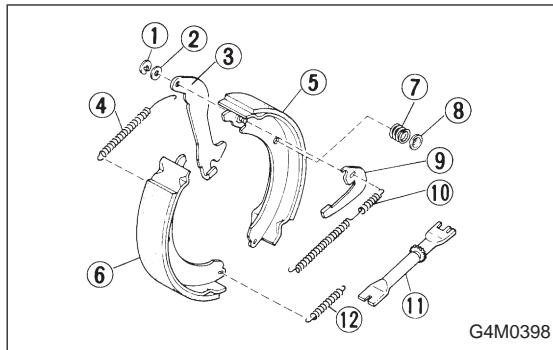


NOTE:


If it is difficult to remove brake drum, remove adjusting hole cover from back plate, and then, turn adjusting screw using a slot-type screwdriver until brake shoe separates from the drum.

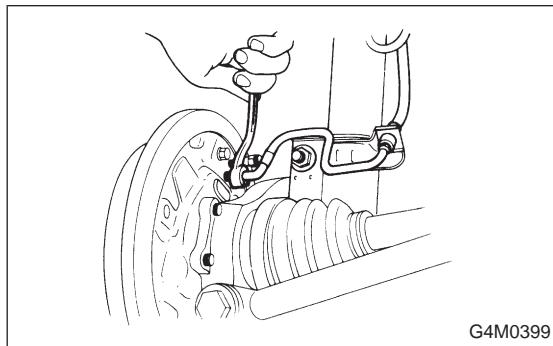
- 4) Hold hold-down pin by securing rear of back plate with your hand.
- 5) Disconnect hold-down cup from hold-down pin by rotating hold-down cup.

- 6) Disconnect lower shoe return spring from shoes.

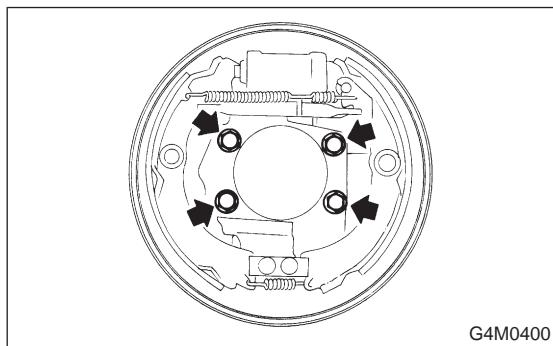


- 7) Remove shoes one by one from back plate with adjuster.

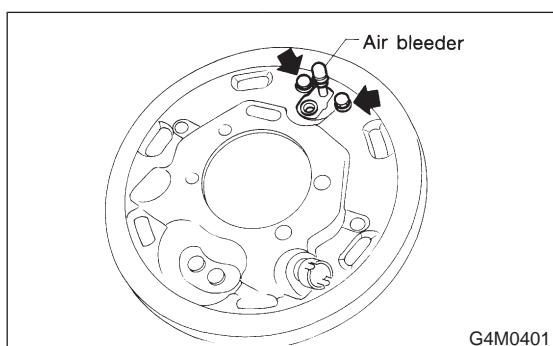
CAUTION:


Be careful not to bend parking brake cable excessively when removing brake shoes.

- 8) Disconnect parking brake cable from parking lever.

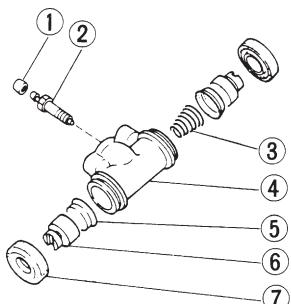

9) Remove the following.

- ① Retainer
- ② Washer
- ③ Parking lever
- ④ Upper shoe return spring
- ⑤ Trailing shoe
- ⑥ Leading shoe
- ⑦ Shoe hold-down spring
- ⑧ Shoe hold-down cup
- ⑨ Adjusting lever
- ⑩ Adjuster spring
- ⑪ Adjuster
- ⑫ Lower shoe return spring



2. BRAKE ASSEMBLY

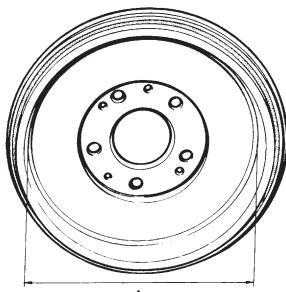
- 1) Remove wheel.
- 2) Remove axle nut.
- 3) Remove brake drum
- 4) Unscrew the brake pipe flare nut and disconnect brake pipe.
- 5) Remove hub. <Ref. to 4-2 [W2A0].>



- 6) Remove the bolts installing back plate, and then, remove brake assembly.

3. WHEEL CYLINDER

- 1) Remove brake drum and shoes.
- 2) Unscrew brake pipe flare nut; and disconnect brake pipe.
- 3) Remove the bolts installing wheel cylinder on back plate, and remove it.


G4M0402

B: DISASSEMBLY

1. WHEEL CYLINDER

- 1) Remove right and left dust boots from wheel cylinder.
- 2) Remove piston, cup, spring and air bleeder screw and cap.

- ① Bleeder cap
- ② Bleeder screw
- ③ Spring
- ④ Cylinder
- ⑤ Cup
- ⑥ Piston
- ⑦ Boot

G4M0403

C: INSPECTION

- 1) If the inside surface of brake drum is streaked, correct the surface. And, if it is unevenly worn, taperingly streaked, or the outside surface of brake drum is damaged, correct or replace it.
- 2) Measure the drum inner diameter.

Drum inner diameter: "L"

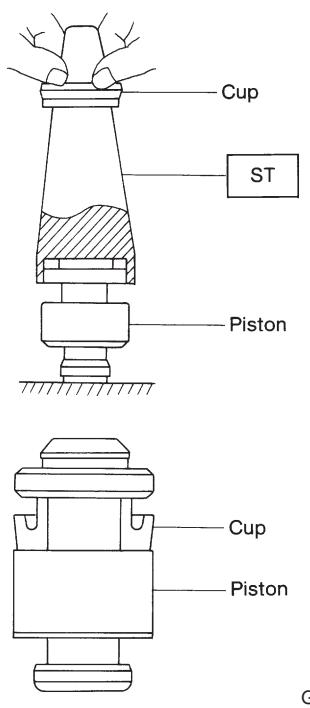
Standard: 228.6 mm (9 in)

Service limit: 230.6 mm (9.08 in)

- 3) Measure the lining thickness.

Lining thickness:

Standard: 4.1 mm (0.161 in)


Service limit: 1.5 mm (0.059 in)

- 4) If the deformation or wear of back plate, shoe, etc. are notable, replace them.
- 5) When the shoe return spring tension is excessively weakened, replace it, taking care to identify upper and lower springs.

D: ASSEMBLY

1. WHEEL CYLINDER

- 1) Clean all parts in brake fluid. Check and replace faulty parts.
 - Cup and boot for damage or fatigue
 - Cylinder, piston and spring or damage or rust formation
- 2) Assembly is the reverse order of disassembly.

- (1) When installing the cup, use ST, apply brake fluid to the frictional surface for smooth installation and pay attention to cup direction.
- (2) STs are available in different sizes.

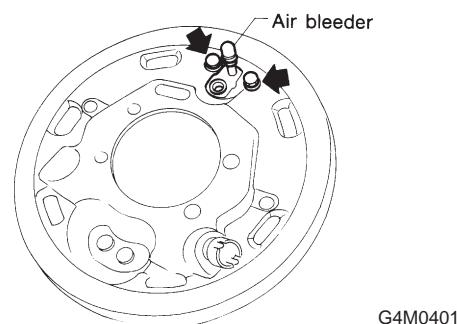
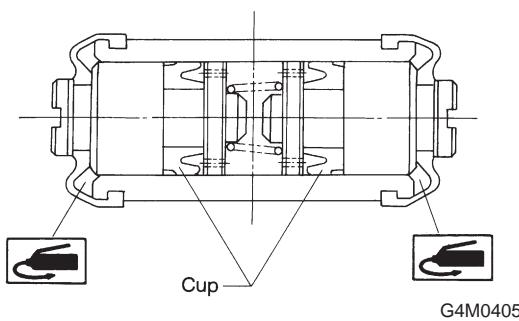
CAUTION:

- When replacing the repair kit, make sure that the sizes of cylinder and cup are the same as those which were replaced.
- Use only the tool of the correct size.

ST: ADAPTER	
Applicable size	Part No.
19.05 mm (3/4 in)	926460000

CAUTION:

While assembling, be careful to prevent any metal chip, dust or dirt from entering the wheel cylinder.

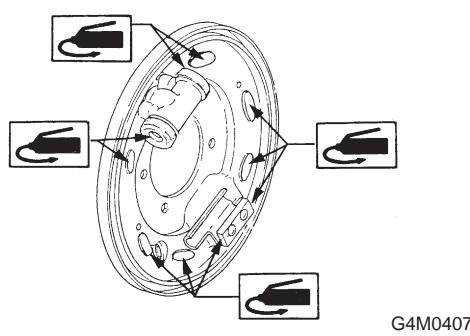


- 3) Apply rubber grease to the boot inside as shown in Figure.

Grease:

NIGLUBE RX-2 (Part No. 003606000)

CAUTION:

Never use brake grease.

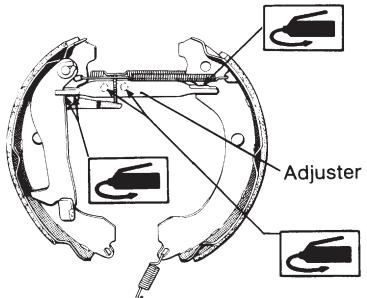

E: INSTALLATION

1. WHEEL CYLINDER

Install wheel cylinder on back plate, and tighten bolts.

Tightening torque:

$10\pm2\text{ N}\cdot\text{m}$ (1.0±0.2 kg-m, 7.2±1.4 ft-lb)

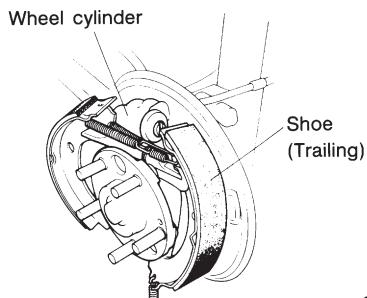


2. BRAKE DRUM AND SHOE

- 1) Clean back plate and wheel cylinder.
- 2) Apply grease to portions indicated by arrows in Figure.

Brake grease:

Dow Corning Molykote No. 7439 (Part No. 725191460)

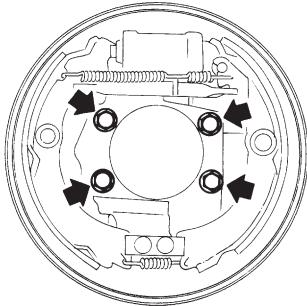

G4M0408

3) Apply grease to adjusting screw and both ends of adjuster.

Brake grease:

Dow Corning Molykote No. 7439 (Part No. 725191460)

4) Connect upper shoe return spring to shoes.



G4M0409

5) While positioning shoes (one at a time) in groove on wheel cylinder, secure shoes.

6) Connect lower shoe return spring.

7) Fix shoes by connecting hold-down cup to hold-down pin.

G4M0400

3. BRAKE ASSEMBLY

1) Install brake assembly on housing, and tighten bolts to install back plate.

Tightening torque:

$52 \pm 6 \text{ N}\cdot\text{m}$ (5.3 \pm 0.6 kg-m, 38.3 \pm 4.3 ft-lb)

2) Install hub. <Ref. to 4-2 [W2D0].>

3) Connect brake pipe, and tighten brake pipe flange nut.

Tightening torque:

$14.7 \pm 3 \text{ N}\cdot\text{m}$ (1.5 \pm 0.3 kg-m, 10.8 \pm 2.2 ft-lb)

4) Set the outside diameter of brake shoes less than 0.5 — 0.8 mm (0.020 — 0.031 in) in comparison with the inside diameter of brake drum.

5) Install brake drum.

6) After installing brake assembly, bleed air from brake line.

3. Master Cylinder

A: REMOVAL

- 1) Thoroughly drain brake fluid from reservoir tank.
- 2) Disconnect fluid level indicator harness connector.
- 3) Remove brake pipes from master cylinder.
- 4) Remove master cylinder mounting nuts, and take out master cylinder from brake booster.

CAUTION:

Be extremely careful not to spill brake fluid. Brake fluid spilt on the vehicle body will harm the painted surface; wipe it off quickly if spilt.

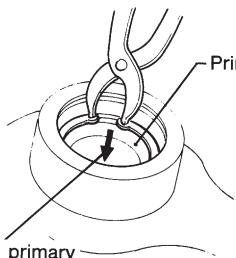
B: DISASSEMBLY

1. PRECAUTIONS FOR DISASSEMBLING

- 1) Remove mud and dirt from the surface of brake master cylinder.
- 2) Prepare tools necessary for disassembly operation, and arrange them neatly on work bench.
- 3) Clean work bench.
- 4) Tools for disassembly operation:
 - 1 Phillips screwdriver
 - 1 C-ring pliers

2. DISASSEMBLING PROCEDURE

- 1) Remove supply valve stopper. (only vehicle equipped with ABS)
- 2) Remove C-ring with C-ring pliers pushing in primary piston slightly.


NOTE:

Piston may jump out from master cylinder.

- 3) Extract primary piston assembly and secondary piston assembly.

CAUTION:

- Do not disassemble the piston assembly; otherwise, the spring set value may be changed.
- Use brake fluid or methanol to wash inside wall of cylinder, pistons and piston cups. Be careful not to damage parts when washing. If methanol is used for washing, do not dip rubber parts, such as piston cups, in it for more than 30 seconds; otherwise, they may become swelled.

G4M0418

C: INSPECTION

If any damage, deformation, wear, swelling, rust, and other faults are found on the primary piston assembly, secondary piston assembly, supply valve stopper, or gasket, replace the faulty part.

CAUTION:

- The primary and secondary pistons must be replaced as complete assemblies.
- The service limit of the clearance between each piston and the master cylinder inner dia. is 0.11 mm (0.0043 in).
- When handling parts, be extremely careful not to damage or scratch the parts, or let any foreign matter get on them.

D: ASSEMBLY

1. PRECAUTIONS FOR ASSEMBLING

- 1) When assembling, be sure to use recommended brake fluid.
- 2) Ensure that the inside wall of cylinder, pistons, and piston cups are free from dirt when assembling.
- 3) Be extremely careful not to damage, scratch, or dent cylinder inside wall, pistons, and piston cups.
- 4) Do not drop parts. Never attempt to use any part that has been dropped accidentally.

2. ASSEMBLING OPERATION

1) Assembling piston assembly:

Apply recommended brake fluid to inside wall of cylinder, and to outer surface of piston assembly, and install piston assemblies carefully into cylinder.

2) Assembling supply valve stopper:

After installing piston into cylinder, push primary piston in about 10 mm (0.39 in), using a rod, such as push rod then assemble gasket and supply valve stopper.

Tightening torque:

$2.2\pm0.7 \text{ N}\cdot\text{m} (0.225\pm0.075 \text{ kg}\cdot\text{m}, 1.6\pm0.5 \text{ ft}\cdot\text{lb})$

CAUTION:

If the gasket and supply valve stopper are assembled without pushing in the primary piston, scratches may be caused on the secondary piston, and no pressure may be built up in the secondary side. To avoid such an error, be sure to push in the primary piston before assembling these parts.

3) Assembling C-ring:

With primary piston pushed in slightly, attach C-ring by using C-ring pliers.

NOTE:

After assembling, ensure that the C-ring is fitted securely in the ring groove.

E: INSTALLATION

To install the master cylinder to the body, reverse the sequence of removal procedure.

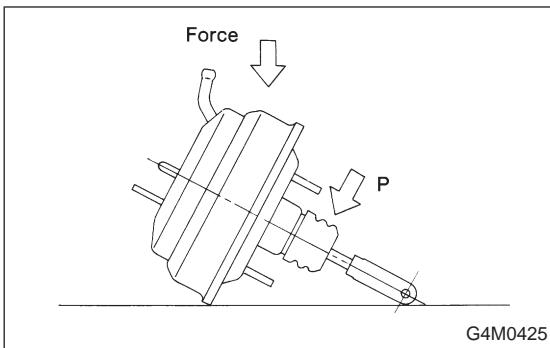
Tightening torque:***Master cylinder mounting nut***

$14\pm4 \text{ N}\cdot\text{m}$ ($1.4\pm0.4 \text{ kg}\cdot\text{m}$, $10.1\pm2.9 \text{ ft}\cdot\text{lb}$)

Piping flare nut

$14.7^{+3}_{-2} \text{ N}\cdot\text{m}$ ($1.5^{+0.3}_{-0.2} \text{ kg}\cdot\text{m}$, $10.8^{+2.2}_{-1.4} \text{ ft}\cdot\text{lb}$)

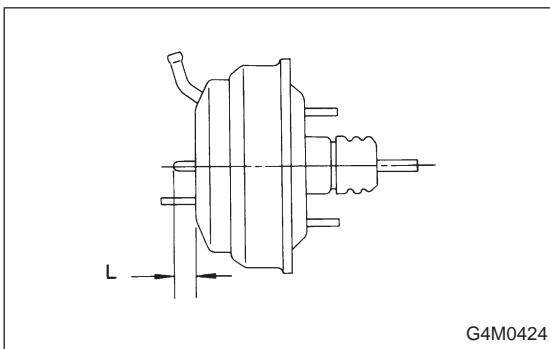
CAUTION:


Be sure to use recommended brake fluid.

4. Brake Booster**A: REMOVAL**

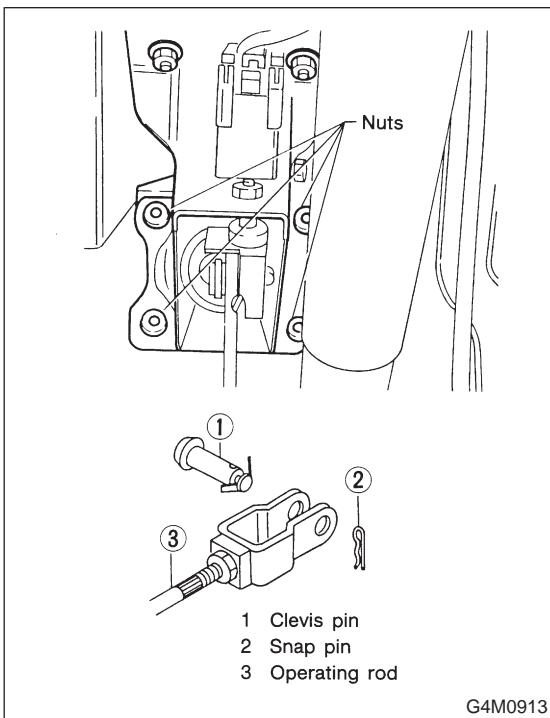
- 1) Remove the following parts at engine compartment.
 - (1) Disconnect connector for brake fluid level indicator.
 - (2) Remove brake pipes from master cylinder.
 - (3) Remove master cylinder installing nuts.
 - (4) Disconnect vacuum hose from brake booster.
- 2) Remove the following parts from the pedal bracket.
 - (1) Snap pin and clevis pin.
 - (2) Four brake booster installing nuts.
- 3) Remove brake booster while shunning brake pipes.

B: HANDLING PRECAUTIONS


- 1) Be careful not to drop brake booster. Brake booster should be discarded if it has been dropped.
- 2) Use special care when handling operating rod. If excessive force is applied to operating rod, sufficient to cause a change in the angle in excess of $\pm3^\circ$, it may result in damage to the power piston cylinder.

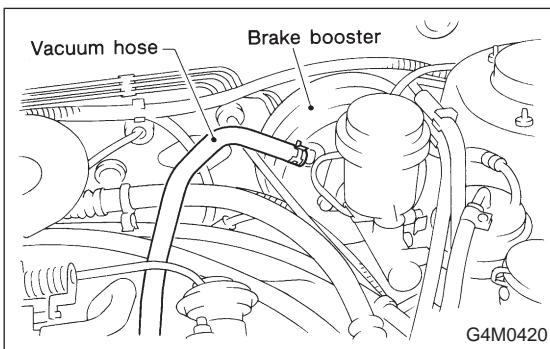
3) Use care when placing brake booster on the floor.

CAUTION:


If external force is applied from above when brake booster is placed in this position, the resin portion as indicated by "P", may be damaged.

4) Do not change the push rod length. If it has been changed, reset the projected length "L" to the standard length.

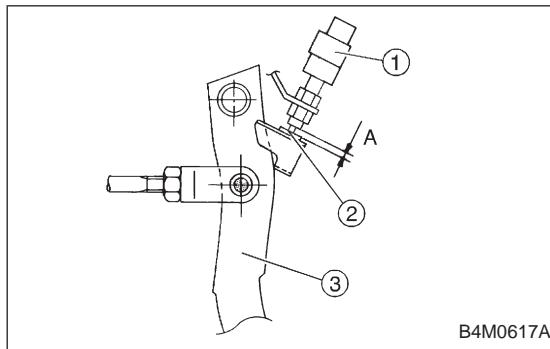
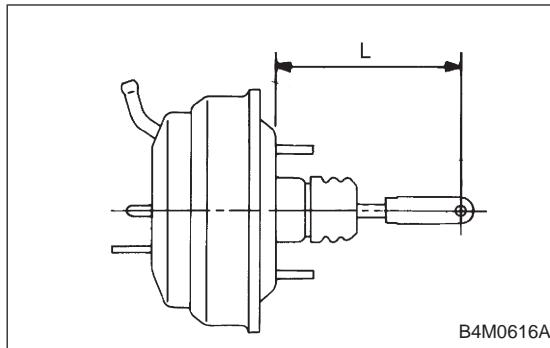
Standard:


$L = 10 \text{ mm (0.39 in)}$

C: INSTALLATION

1) Mount brake booster in position.

2) Connect operating rod to brake pedal with clevis pin and snap pin.

3) Connect vacuum hose to brake booster.

4) Mount master cylinder onto brake booster.

5) Connect brake pipes to master cylinder.

6) Connect electric connector for brake fluid level indicator.

7) Adjust operating rod of brake booster.

Standard: L

145.3 mm (5.72 in)

If it is not in specified value, adjust it by adjusting brake booster operating rod.

8) Measure the clearance between threaded end of stop light switch and stopper.

If it is not in specified value, adjust it by adjusting position of stop light switch.

① Stop light switch

② Stopper

③ Brake pedal

CAUTION:

Be careful not to rotate stop light switch.

Stop light switch clearance: A

0.3 mm (0.012 in)

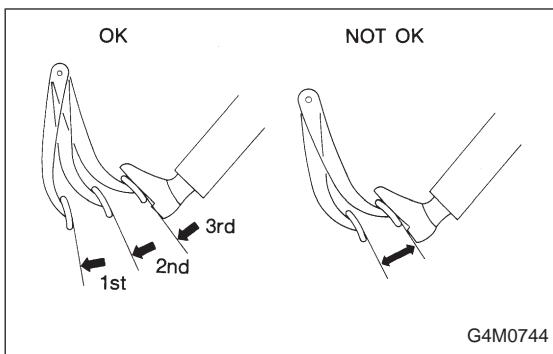
9) Apply grease to operating rod connecting pin to prevent it from wearing.

10) Bleed air from brake system.

Tightening torque (Air bleeder screw):

$8\pm1\text{ N}\cdot\text{m (0.8}\pm0.1\text{ kg}\cdot\text{m, 5.8}\pm0.7\text{ ft-lb)}$

11) Conduct road tests to ensure brakes do not drag.

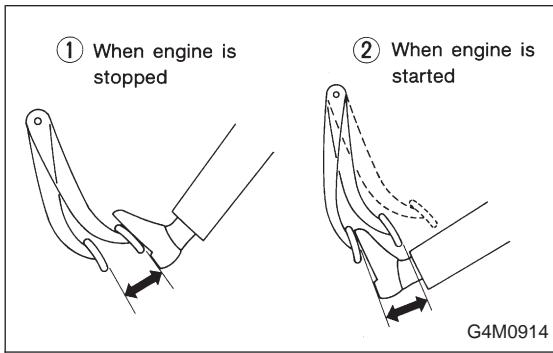

D: OPERATION CHECK (WITHOUT USING GAUGES)

CAUTION:

When checking operation, be sure to securely apply the hand brake.

1. CHECKING WITHOUT USING GAUGES

This method cannot determine the exact portion which has failed, but it can provide a rough understanding of the nature of the failure if checking is conducted in accordance with the following procedures.



2. AIR TIGHTNESS CHECK

Start engine, and run it for 1 to 2 minutes, then turn it off. Depress brake pedal several times applying the same pedal force as that used in ordinary braking operations. The pedal stroke should be greatest on the 1st depression, and it should become smaller with each successive depression. If no change occurs in the pedal height while in a depressed state, brake booster is faulty.

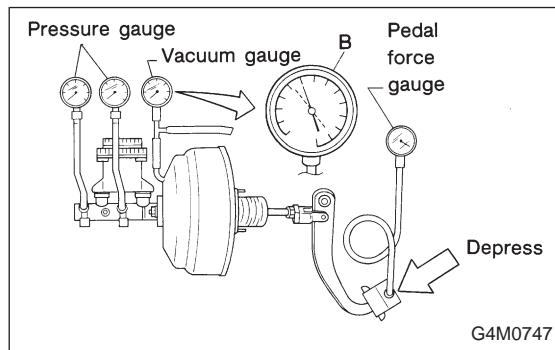
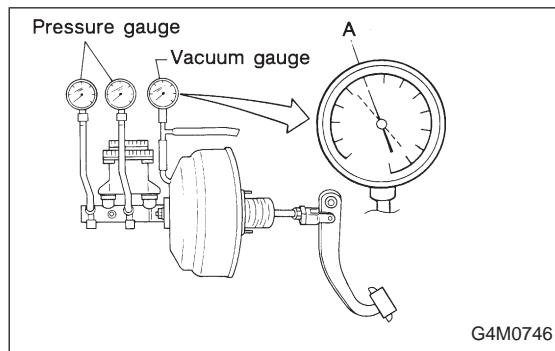
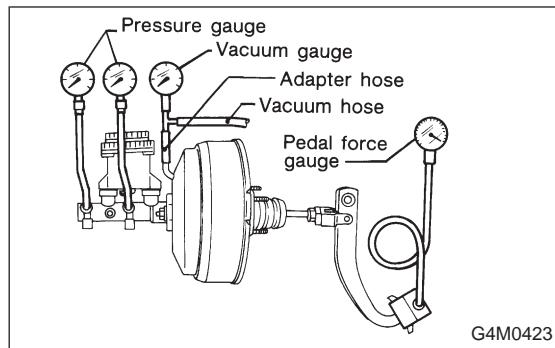
NOTE:

- In the event of defective operation, inspect the condition of the check valve and vacuum hose.
- Replace them if faulty and conduct the test again.
- If no improvement is observed, check precisely with gauges.

3. OPERATION CHECK

- 1) With engine off, depress brake pedal several times applying the same pedal force and make sure that the pedal height does not vary with each depression of the pedal.
- 2) With brake pedal depressed, start engine.
- 3) As engine starts, brake pedal should move slightly toward the floor. If no change occurs in the pedal height, brake booster is faulty.

NOTE:




If faulty, check precisely with gauges.

4. LOADED AIR TIGHTNESS CHECK

Depress brake pedal while engine is running, and turn off engine while the pedal is still depressed. Keep the pedal depressed for 30 seconds; if no change occurs in the pedal height, brake booster is functioning normally; if the pedal height increases, it is faulty.

NOTE:

If faulty, check precisely with gauges.

E: OPERATION CHECK (WITH GAUGES)

CAUTION:

When checking operation, be sure to securely apply the hand brake.

1. CHECKING WITH GAUGES

Connect gauges as shown in Figure. After bleeding air from pressure gauges, proceed to each check.

2. AIR TIGHTNESS CHECK

- 1) Start engine and keep it running until a vacuum of 66.7 kPa (500 mmHg, 19.69 inHg) = point A is indicated on vacuum gauge. Do not depress brake pedal.
- 2) Stop engine and watch the gauge. If the vacuum drop range is less than 3.3 kPa (25 mmHg, 0.98 inHg) within 15 seconds after stopping engine, brake booster is functioning properly.

If defective, the cause may be one of those listed below.

- Check valve malfunction
- Leak from vacuum hose
- Leak from the shell jointed portion or stud bolt welded portion
- Damaged diaphragm
- Leak from valve body seal and bearing portion
- Leak from plate and seal assembly portion
- Leak from poppet valve assembly portion

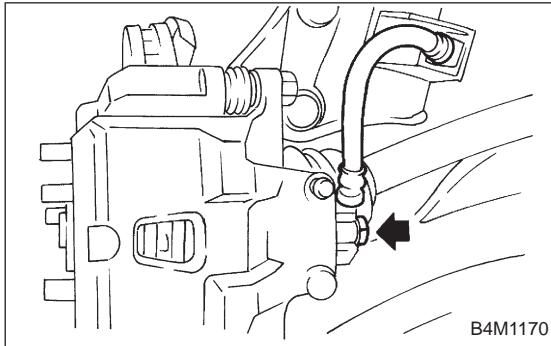
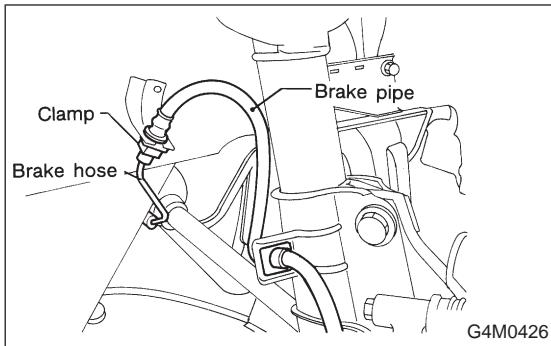
3. LOADED AIR TIGHTNESS CHECK

- 1) Start engine and depress brake pedal with pedal force of 196 N (20 kg, 44 lb). Keep engine running until a vacuum of 66.7 kPa (500 mmHg, 19.69 inHg) = point B is indicated on vacuum gauge while the pedal is still depressed.
- 2) Stop engine and watch vacuum gauge.

If the vacuum drop range is less than 3.3 kPa (25 mmHg, 0.98 inHg) within 15 seconds after stopping engine, brake booster is functioning properly.

If defective, refer to "AIR TIGHTNESS CHECK". <Ref. to 4-4 [W4E2].>

4. LACK OF BOOSTING ACTION CHECK



Turn off engine, and set the vacuum gauge reading at "0". Then, check the fluid pressure when brake pedal is depressed. The pressure must be greater than the standard value listed below.

Brake pedal force	147 N (15 kg, 33 lb)	294 N (30kg, 66 lb)
Models without ABS	785 kPa (8 kg/cm ² , 114 psi)	2,158 kPa (22 kg/cm ² , 313 psi)
Models with ABS	588 kPa (6 kg/cm ² , 85 psi)	1,863 kPa (19 kg/cm ² , 270 psi)

5. BOOSTING ACTION CHECK

Set the vacuum gauge reading at 66.7 kPa (500 mmHg, 19.69 inHg) by running engine. Then, check the fluid pressure when brake pedal is depressed. The pressure must be greater than the standard value listed below.

Brake pedal force	147 N (15 kg, 33 lb)	294 N (30kg, 66 lb)
Models without ABS	5,492 kPa (56 kg/cm ² , 796 psi)	8,434 kPa (86 kg/cm ² , 1,223 psi)
Models with ABS	5,394 kPa (55 kg/cm ² , 782 psi)	9,219 kPa (94 kg/cm ² , 1,337 psi)

5. Brake Hose

A: REMOVAL

- 1) Separate brake pipe from brake hose.
(Always use flare nut wrench and be careful not to deform flare nut.)
- 2) Pull out clamp to remove brake hose.
- 3) Remove clamp at strut and union bolt.

B: INSTALLATION

1. FRONT BRAKE HOSE

- 1) Route end of brake hose (on caliper side) through hole in brake hose bracket at strut location.
- 2) Tighten end of brake hose at caliper using a union bolt.

Torque (Union bolt):

$18 \pm 3 \text{ N}\cdot\text{m} (1.8 \pm 0.3 \text{ kg}\cdot\text{m}, 13.0 \pm 2.2 \text{ ft-lb})$

- 3) Secure middle fitting of brake hose to bracket at strut location using a clamp.
- 4) Position disc in straight-forward direction and route brake hose through hole in bracket on wheel apron side.

CAUTION:

Be sure brake hose is not twisted.

- 5) Temporarily tighten flare nut to connect brake pipe and hose.
- 6) Fix brake hose with clamp at wheel apron bracket.
- 7) While holding hexagonal part of brake hose fitting with a wrench, tighten flare nut to the specified torque.

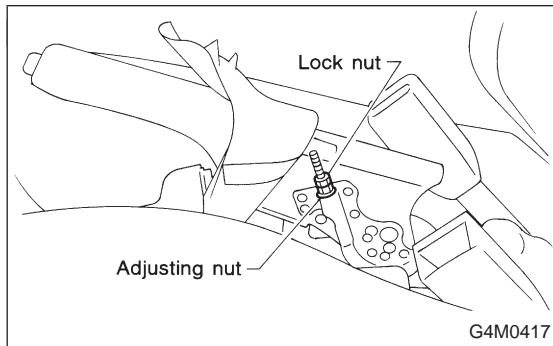
Torque (Brake pipe flare nut):

$14.7 \pm 3 \text{ N}\cdot\text{m} (1.5 \pm 0.3 \text{ kg}\cdot\text{m}, 10.8 \pm 2.2 \text{ ft-lb})$

- 8) Bleed air from the brake system.

2. REAR BRAKE HOSE

- 1) Pass brake hose through the hole of bracket, and lightly tighten flare nut to connect brake pipe.
- 2) Insert clamp upward to fix brake hose.
- 3) Perform the same procedures as before mentioned in steps 7) and 8).

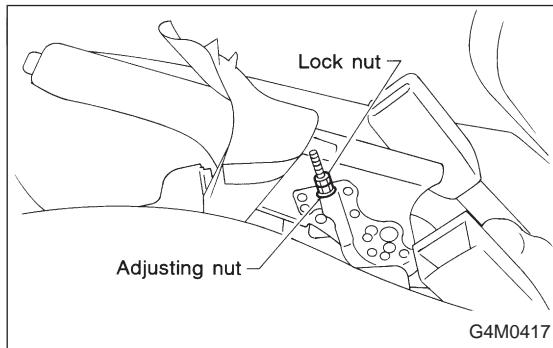

6. Parking Brake Lever

A: REPLACEMENT

- 1) Remove console box from front floor.
- 2) Disconnect electric connector for parking brake switch.
- 3) Loosen parking brake adjuster, and remove inner cable end from equalizer.
- 4) Remove parking brake lever.
- 5) Install parking brake lever in the reverse order of removal.

Torque (Lever installing bolt):

$18\pm 5 \text{ N}\cdot\text{m} (1.8\pm 0.5 \text{ kg}\cdot\text{m}, 13.0\pm 3.6 \text{ ft-lb})$



- 6) Adjust parking brake lever by turning adjuster until parking brake lever stroke is set at 7 to 8 notches with operating force of 196 N (20 kg, 44 lb).

- 7) Tighten lock nut.

Torque (Adjuster lock nut):

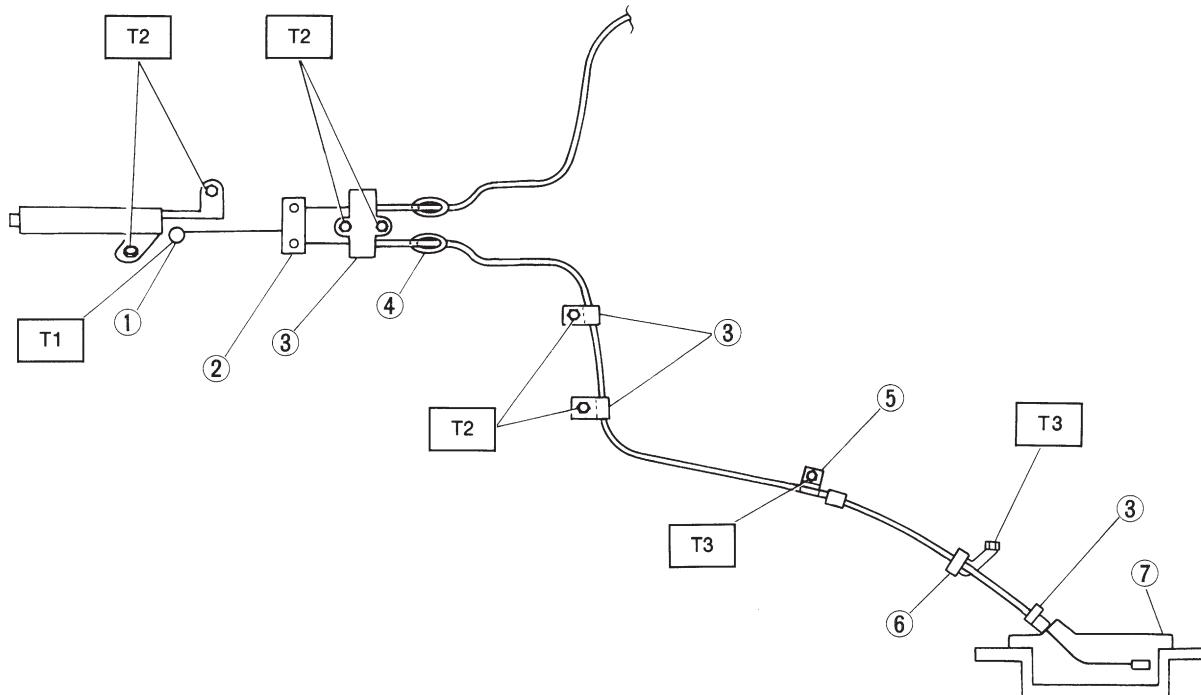
$5.9\pm 1.5 \text{ N}\cdot\text{m} (0.60\pm 0.15 \text{ kg}\cdot\text{m}, 4.3\pm 1.1 \text{ ft-lb})$

B: PARKING BRAKE ADJUSTMENT

1. LEVER STROKE ADJUSTMENT

- 1) Remove console box lid.
- 2) Forcibly pull parking brake lever 3 to 5 times.
- 3) Adjust parking brake lever by turning adjuster until parking brake lever stroke is set at 7 to 8 notches with operating force of 196 N (20 kg, 44 lb).
- 4) Tighten lock nut.
- 5) Install console box lid.

Lever stroke:

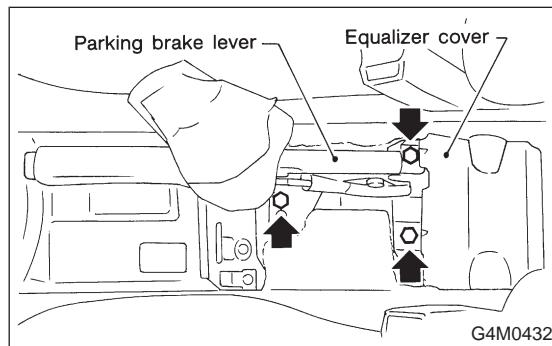

*7 to 8 notches when pulled
with a force of 196 N (20 kg, 44 lb)*

Tightening torque (Lock nut):

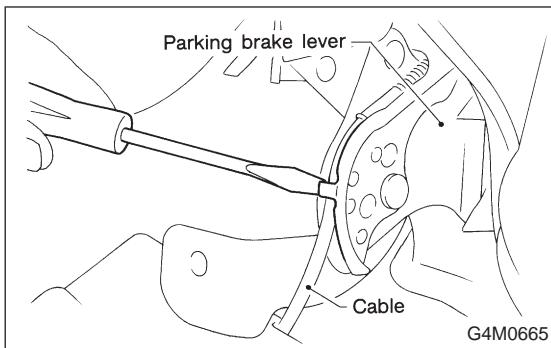
$5.9\pm 1.5 \text{ N}\cdot\text{m} (0.60\pm 0.15 \text{ kg}\cdot\text{m}, 4.3\pm 1.1 \text{ ft-lb})$

7. Parking Brake Cable

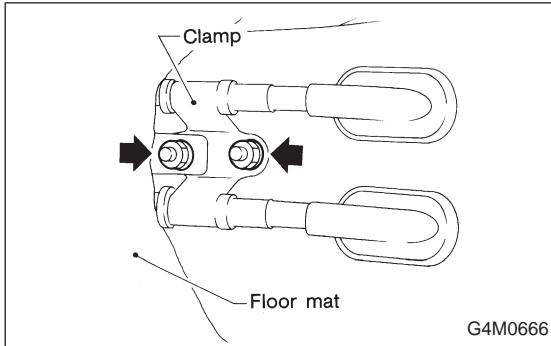
A: REPLACEMENT

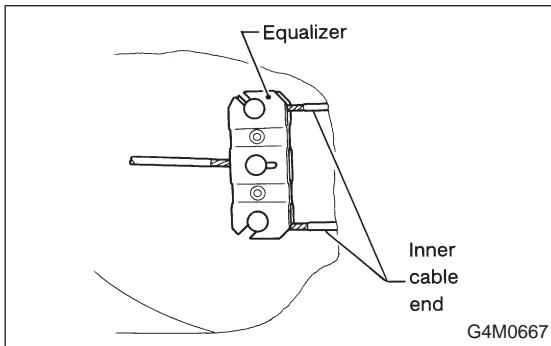

G4M0431

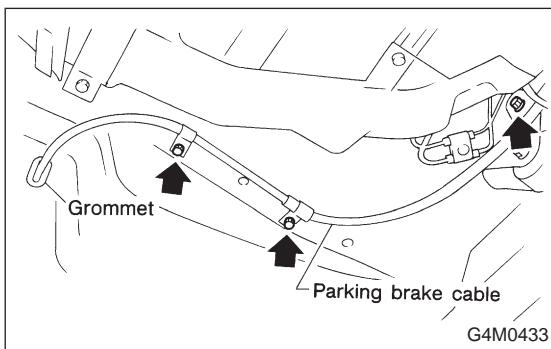
- ① Adjuster
- ② Equalizer
- ③ Clamp
- ④ Grommet
- ⑤ Bracket


- ⑥ Cable guide (Trailing link)
- ⑦ Parking brake ASSY

Tightening torque: N·m (kg·m, ft·lb)
 T1: 5.9±1.5 (0.60±0.15, 4.3±1.1)
 T2: 18±5 (1.8±0.5, 13.0±3.6)
 T3: 32±10 (3.3±1.0, 24±7)


- 1) Lift-up vehicle.
- 2) Remove rear tires and wheels.
- 3) Remove rear cushion.
- 4) Remove console box from front floor.
- 5) Loosen parking cable adjuster, then remove inner cable end from equalizer, and detach clamps.


- 6) Remove parking brake lever.


7) Unbend parking brake lever pawls and remove cable.

8) Roll up floor mat and remove clamps.
 9) Remove equalizer cover.

10) Remove inner cable end from equalizer.

11) Pull out parking brake cable from rear brake.
 <Ref. to 4-4 [W2A0].>
 12) Pull out clamp from rear brake.
 13) Remove bolt and bracket from trailing link bracket.

14) Remove bolt and clamp from rear floor.
 15) Detach grommet from rear floor.
 16) Remove cable assembly from cabin by forcibly pulling it backward.

17) Detach parking brake cable from cable guide at rear trailing link.

18) Install (new) parking brake assembly in the reverse order of removal.

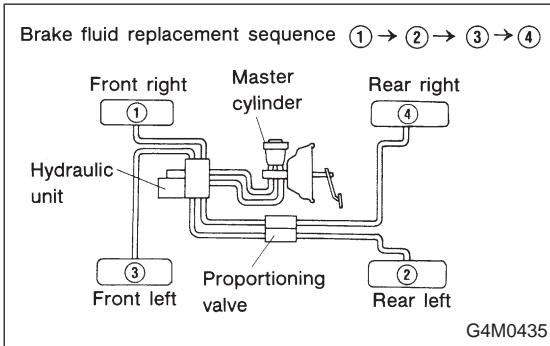
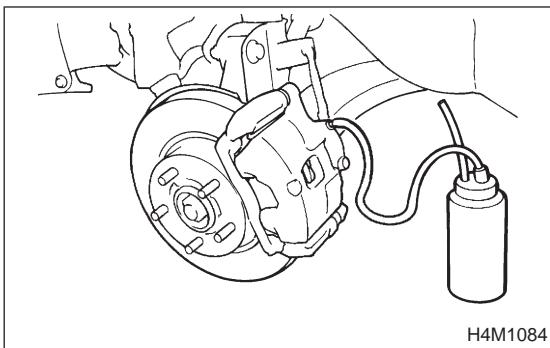
NOTE:

- Be sure to pass cable through cable guide inside the tunnel.
- Be sure to adjust the lever stroke. <Ref. to 4-4 [W6B1].>

8. Air Bleeding

A: GENERAL RULES FOR EFFECTIVE BLEEDING

- 1) Start with the brakes (wheels) connecting to the secondary chamber of the master cylinder.
- 2) The time interval between two brake pedal operations (from the time when the pedal is released to the time when it is depressed another time) shall be approximately 3 seconds.
- 3) The air bleeder on each brake shall be released for 1 to 2 seconds.



B: BLEEDING PROCEDURE

CAUTION:

- The FMVSS No. 116, fresh DOT3 or 4 brake fluid must be used.
- Cover bleeder with waste cloth, when loosening it, to prevent brake fluid from being splashed over surrounding parts.
- Avoid mixing different brands of brake fluid to prevent degrading the quality of the fluid.
- Be careful not to allow dirt or dust to get into the reservoir tank.

NOTE:

- During bleeding operation, keep the brake reserve tank filled with brake fluid to eliminate entry of air.
- Brake pedal operating must be very slow.
- For convenience and safety, it is advisable to have two men working.

1) Make sure that there is no leak from joints and connections of the brake system.

2) Fit one end of vinyl tube into the air bleeder and put the other end into a brake fluid container.

3) Slowly depress the brake pedal and keep it depressed. Then, open the air bleeder to discharge air together with the fluid.

Release air bleeder for 1 to 2 seconds.

Next, with the bleeder closed, slowly release the brake pedal.

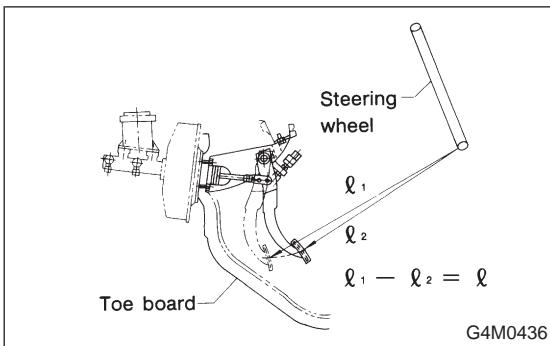
Repeat these steps until there are no more air bubbles in the vinyl tube.

Allow 3 to 4 seconds between two brake pedal operations.

CAUTION:

Cover bleeder with waste cloth, when loosening it, to prevent brake fluid from being splashed over surrounding parts.

NOTE:


Brake pedal operating must be very slow.

4) Tighten air bleeder securely when no air bubbles are visible.

Air bleeder tightening torque:

$8\pm1\text{ N}\cdot\text{m}$ ($0.8\pm0.1\text{ kg}\cdot\text{m}$, $5.8\pm0.7\text{ ft}\cdot\text{lb}$)

5) Perform these steps for the brakes connecting to the secondary chamber of master cylinder, first, and then for the ones connecting to primary chamber. With all procedures completed, fully depress the brake pedal and keep it in that position for approximately 20 seconds to make sure that there is no leak evident in the entire system.

6) Perform sequence control. (With ABS model) <Ref. to 4-4 [W12D1].>

7) Check the pedal stroke.

While the engine is idling, depress the brake pedal with a 490 N (50 kg, 110 lb) load and measure the distance between the brake pedal and steering wheel. With the brake pedal released, measure the distance between the pedal and steering wheel again. The difference between the two measurements must be more than specified.

Specified pedal stroke:

Without ABS

90 mm (3.54 in)

With ABS

95 mm (3.74 in)

When depressing brake pedal with a 490 N (50 kg, 110 lb) load.

(1) Models without ABS

If the distance is more than specifications, there is a possibility that air is in the brake line. Bleed air from the brake line.

(2) Models with ABS

If the distance is more than specifications, there is a possibility air is in the inside of the hydraulic unit. Therefore, air must be bled from the inside of the hydraulic unit to the brake pipes in accordance with the bleeding sequence control. <Ref. to 4-4 [W12D1].>

8) Add brake fluid to the required level (MAX. level) of reserve tank.

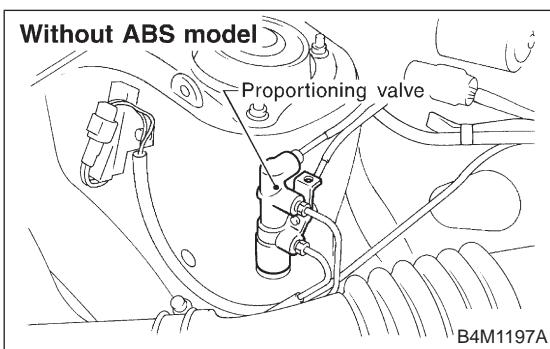
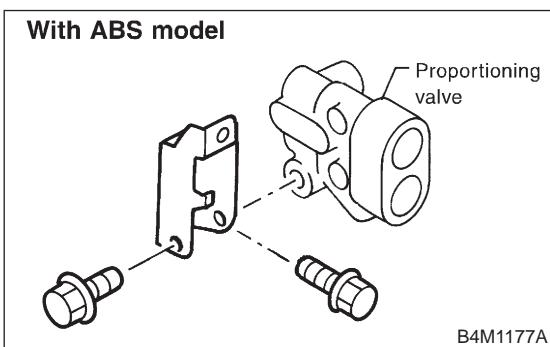
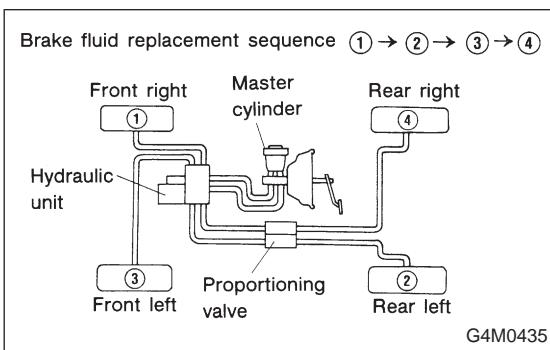
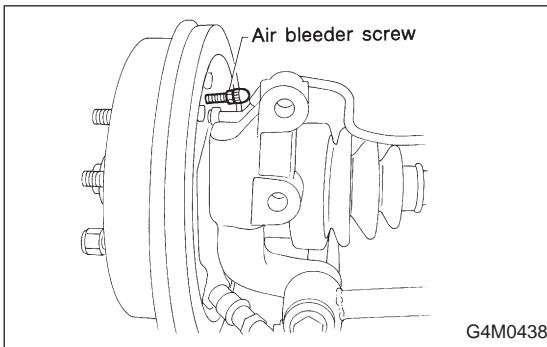
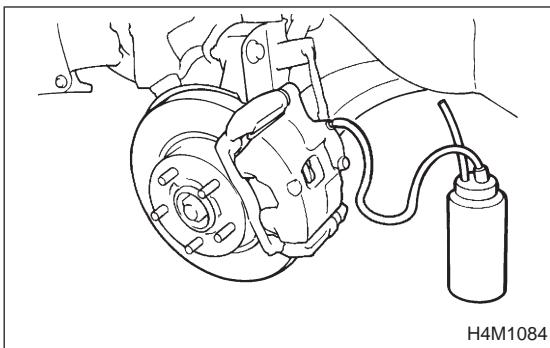
9) As a final step, test run the vehicle at low speed and apply brakes relatively hard 2 to 3 times to ensure that brakes provide normal braking action on all four wheels without dragging and uneven braking.

9. Brake Fluid Replacement

A: REPLACEMENT

CAUTION:

- To always maintain the brake fluid characteristics, replace the brake fluid according to maintenance schedule or earlier than that when used in severe condition.
- The FMVSS No. 116, fresh DOT3 or 4 brake fluid must be used.
- Cover bleeder with waste cloth, when loosening it, to prevent brake fluid from being splashed over surrounding parts.
- Avoid mixing different brands of brake fluid to prevent degrading the quality of the fluid.
- Be careful not to allow dirt or dust to get into the reservoir tank.






NOTE:

- During bleeding operation, keep the brake reserve tank filled with brake fluid to eliminate entry of air.
- Brake pedal operating must be very slow.
- For convenience and safety, it is advisable to have two men working.
- The amount of brake fluid required is approximately 500 ml (16.9 US fl oz, 17.6 Imp fl oz) for total brake system.

- 1) Either jack-up vehicle and place a safety stand under it, or lift-up vehicle.
- 2) Remove both front and rear wheels.
- 3) Draw out the brake fluid from master cylinder with syringe.
- 4) Refill reservoir tank with recommended brake fluid.

Recommended brake fluid:

FMVSS No. 116, fresh DOT3 or 4 brake fluid

5) Install one end of a vinyl tube onto the air bleeder of and insert the other end of the tube into a container to collect the brake fluid.

6) Instruct your co-worker to depress the brake pedal slowly two or three times and then hold it depressed.

7) Loosen bleeder screw approximately 1/4 turn until a small amount of brake fluid drains into container, and then quickly tighten screw.

8) Repeat steps 6) and 7) above until there are no air bubbles in drained brake fluid and new fluid flows through vinyl tube.

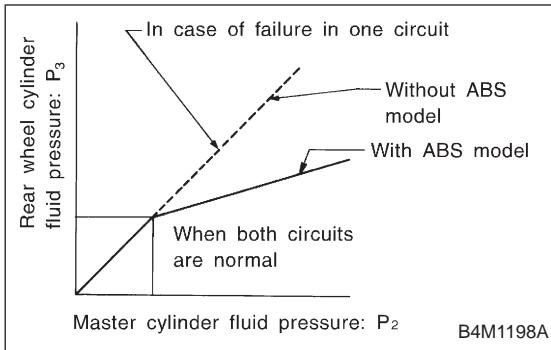
NOTE:

Add brake fluid as necessary while performing the air bleed operation, in order to prevent the tank from running short of brake fluid.

9) After completing the bleeding operation, hold brake pedal depressed and tighten screw and install bleeder cap.

Tightening torque (Bleeder screw):

$8\pm1\text{ N}\cdot\text{m}$ ($0.8\pm0.1\text{ kg}\cdot\text{m}$, $5.8\pm0.7\text{ ft}\cdot\text{lb}$)


10) Bleed air from each wheel cylinder using the same procedures as described in steps 6) through 7) above.

11) Depress brake pedal with a force of approximately 294 N (30 kg, 66 lb) and hold it there for approximately 20 seconds. At this time check pedal to see if it shows any unusual movement.

Visually inspect bleeder screws and brake pipe joints to make sure that there is no fluid leakage.

12) Install wheels, and drive car for a short distance between 2 to 3 km (1 to 2 miles) to make sure that brakes are operating properly.

10. Proportioning Valve

A: INSPECTION

- 1) Install the oil pressure gauges to measure the master cylinder fluid pressure (front wheel brake fluid pressure) and rear wheel cylinder fluid pressure.
- 2) Bleed air from the oil pressure gauges.
- 3) Check the master cylinder fluid pressure and rear wheel cylinder fluid pressure.
- 4) For the oil pressure in case of split point, refer to A: SPECIFICATIONS 4-4 [S100].

The standard values are shown in Figure.

B: REMOVAL

- 1) Remove brake pipe from proportioning valve at four places.
- 2) Remove proportioning valve from its bracket.

CAUTION:

Do not disassemble or adjust the proportioning valve. (The proportioning valve must be replaced as an assembly.)

C: INSTALLATION

- 1) Install proportioning valve to bracket.
- 2) Connect brake pipes correctly to proportioning valve.
- 3) Bleed air, then check each joint of brake pipe for oil leaks.

Tightening torque:

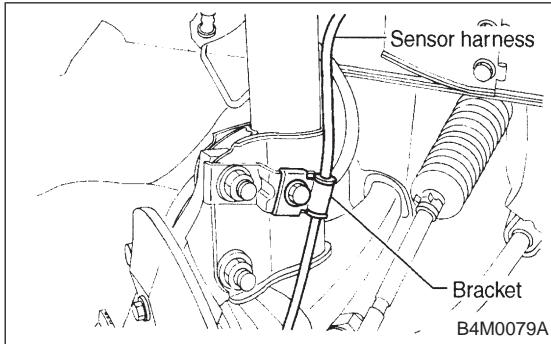
Proportioning valve to brake pipe flare nut:
 $15^{+3}_{-2} \text{ N}\cdot\text{m} (1.5^{+0.3}_{-0.2} \text{ kg-m}, 10.8^{+2.2}_{-1.4} \text{ ft-lb})$

Proportioning valve to bracket:

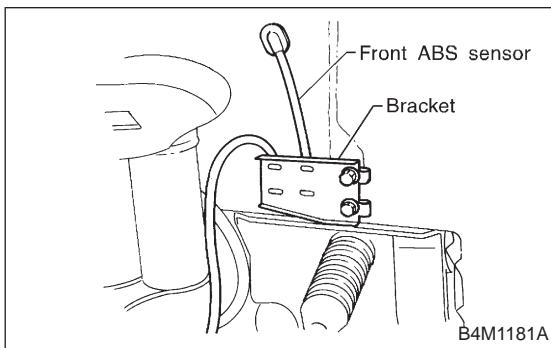
Normal brake vehicle:

$22 \pm 4.4 \text{ N}\cdot\text{m} (2.25 \pm 0.45 \text{ kg-m}, 16.3 \pm 3.3 \text{ ft-lb})$

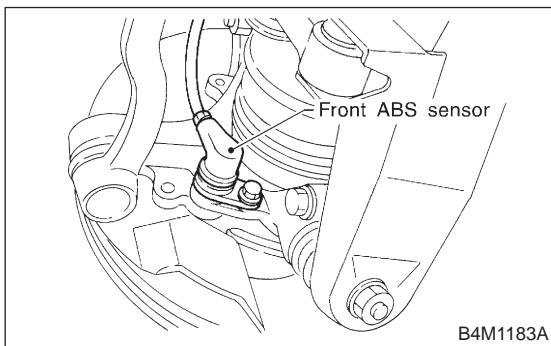
ABS equipped vehicle:


$18 \pm 5 \text{ N}\cdot\text{m} (1.8 \pm 0.5 \text{ kg-m}, 13.0 \pm 3.6 \text{ ft-lb})$

11. ABS Sensor

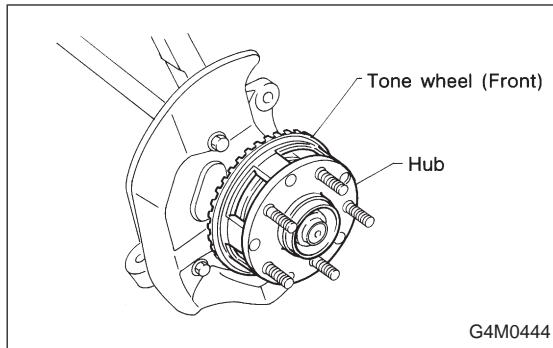

A: REMOVAL

1. FRONT ABS SENSOR


- 1) Disconnect front ABS sensor connector located in engine compartment.

- 2) Remove bolts which secure sensor harness to strut.

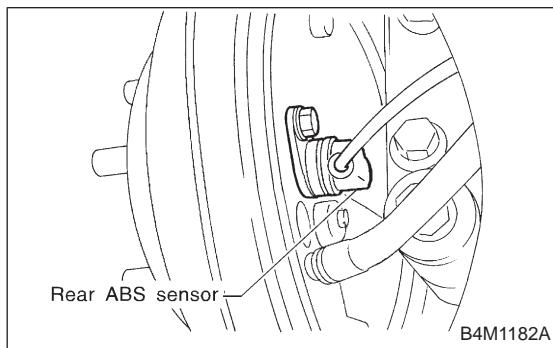
- 3) Remove bolts which secure sensor harness to body.


- 4) Remove bolts which secure front ABS sensor to housing, and remove front ABS sensor.

CAUTION:

- Be careful not to damage pole piece located at tip of the sensor and teeth faces during removal.
- Do not pull sensor harness during removal.

- 5) Remove front disc brake caliper and disc rotor from housing after removing front tire.


- 6) Remove front drive shaft and housing and hub assembly. <Ref. to 4-2 [W1A0].>

7) Remove tone wheel while removing hub from housing and hub assembly. <Ref. to 4-2 [W1B0].>

CAUTION:

Be careful not to damage teeth faces of tone wheel during removal.

3) Remove rear ABS sensor from rear back plate.
4) Remove rear tone wheel while removing hub from housing and hub assembly. <Ref. to 4-2 [W2A0].>

CAUTION:

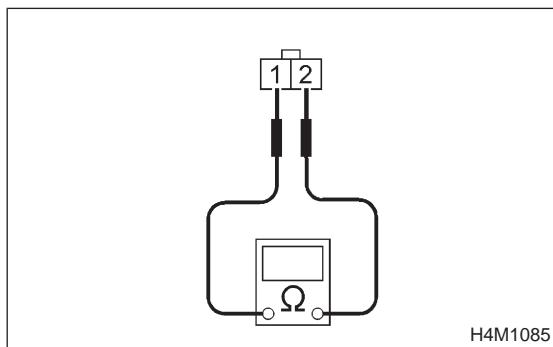
- Be careful not to damage pole piece located at tip of the sensor and teeth faces during removal.
- Do not pull sensor harness during removal.

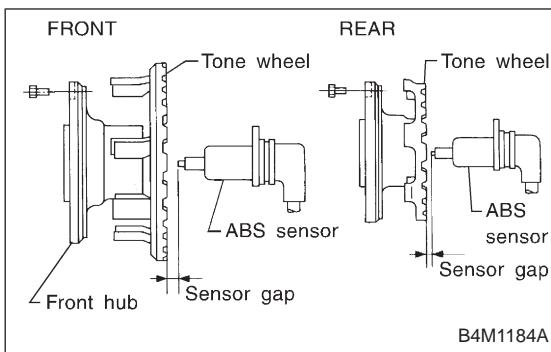
B: INSPECTION

1. ABS SENSOR

1) Check pole piece of ABS sensor for foreign particles or damage. If necessary, clean pole piece or replace ABS sensor.

2) Measure ABS sensor resistance.


ABS sensor	Terminal No.	Standard
Front - LH	1 and 2	1.0±0.2 kΩ
Front - RH	1 and 2	
Rear - LH	1 and 2	
Rear - RH	1 and 2	


CAUTION:

If resistance is outside the standard value, replace ABS sensor with new one.

NOTE:

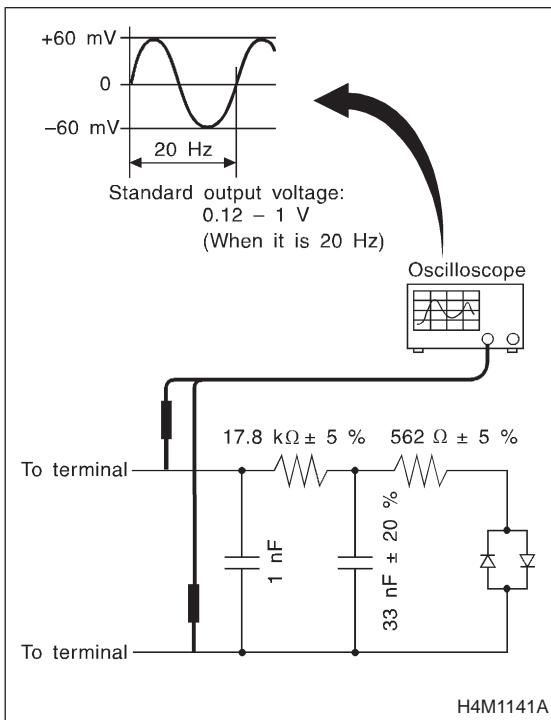
Check ABS sensor cable for discontinuity. If necessary, replace with a new one.

2. TONE WHEEL

- 1) Check tone wheel's teeth (44 pieces) for cracks or dents. If necessary, replace tone wheel with a new one.
- 2) Clearances (sensor gaps) should be measured one by one to ensure tone wheel and speed sensor are installed correctly.

ABS sensor clearance:

Front


0.9 — 1.4 mm (0.035 — 0.055 in)

Rear

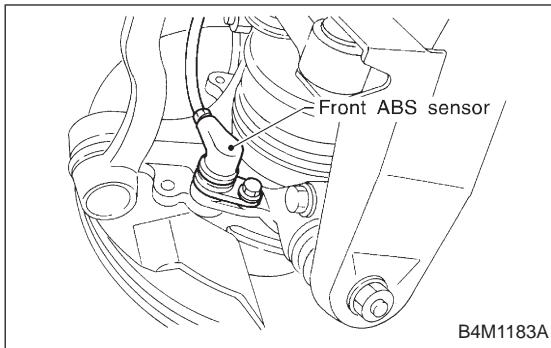
0.7 — 1.2 mm (0.028 — 0.047 in)

NOTE:

- If clearance is narrow, adjust by using spacer (Part No. 26755AA000).
- If clearance is wide, check the outputted voltage then replace ABS sensor or tone wheel if the outputted voltage is outside the specification.

3. OUTPUT VOLTAGE

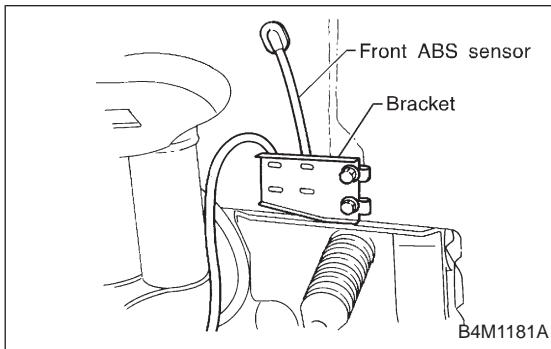
Output voltage can be checked by the following method. Install resistor and condenser, then rotate wheel about 2.75 km/h (2 MPH) or equivalent.


NOTE:

Regarding terminal No., please refer to item 1. ABS SENSOR.

C: INSTALLATION

1. FRONT ABS SENSOR


- 1) Install tone wheel on hub, then install housing on hub assembly. <Ref. to 4-2 [W1D0].>

2) Temporarily install front ABS sensor on housing.

CAUTION:

Be careful not to strike ABS sensor's pole piece and tone wheel's teeth against adjacent metal parts during installation.

4) Install front ABS sensor on strut and wheel apron bracket.

Tightening torque:

$32\pm10 \text{ N}\cdot\text{m}$ ($3.3\pm1.0 \text{ kg}\cdot\text{m}$, $24\pm7 \text{ ft-lb}$)

5) Place a thickness gauge between ABS sensor's pole piece and tone wheel's tooth face. After standard clearance is obtained over the entire perimeter, tighten ABS sensor on housing to specified torque.

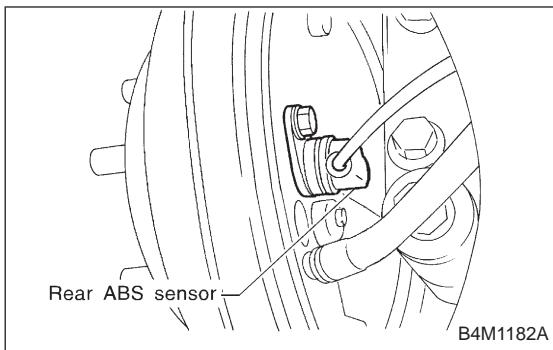
ABS sensor standard clearance:

$0.9 — 1.4 \text{ mm}$ ($0.035 — 0.055 \text{ in}$)

Tightening torque:

$32\pm10 \text{ N}\cdot\text{m}$ ($3.3\pm1.0 \text{ kg}\cdot\text{m}$, $24\pm7 \text{ ft-lb}$)

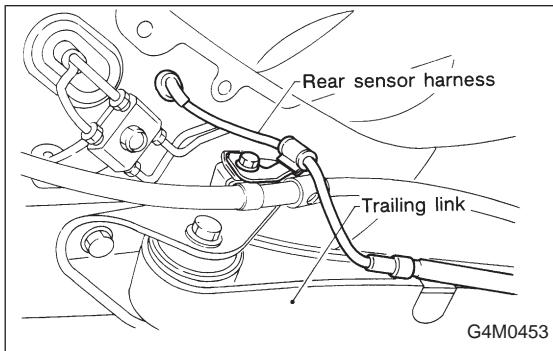
CAUTION:


Check the marks on the harness to make sure that no distortion exists. (RH: white, LH: yellow)

NOTE:

If the clearance is outside specifications, readjust.

2. REAR ABS SENSOR


1) Install rear tone wheel on hub, then rear housing on hub.

2) Temporarily install rear ABS sensor on back plate.

CAUTION:

Be careful not to strike ABS sensor's pole piece and tone wheel's teeth against adjacent metal parts during installation.

3) Install rear drive shaft to rear housing and rear differential spindle. <Ref. to 4-2 [W2E0].>

Tightening torque:

$32\pm10 \text{ N}\cdot\text{m}$ ($3.3\pm1.0 \text{ kg}\cdot\text{m}$, $24\pm7 \text{ ft-lb}$)

5) Place a thickness gauge between ABS sensor's pole piece and tone wheel's tooth face. After standard clearance is obtained over the entire perimeter, tighten ABS sensor on back plate to specified torque.

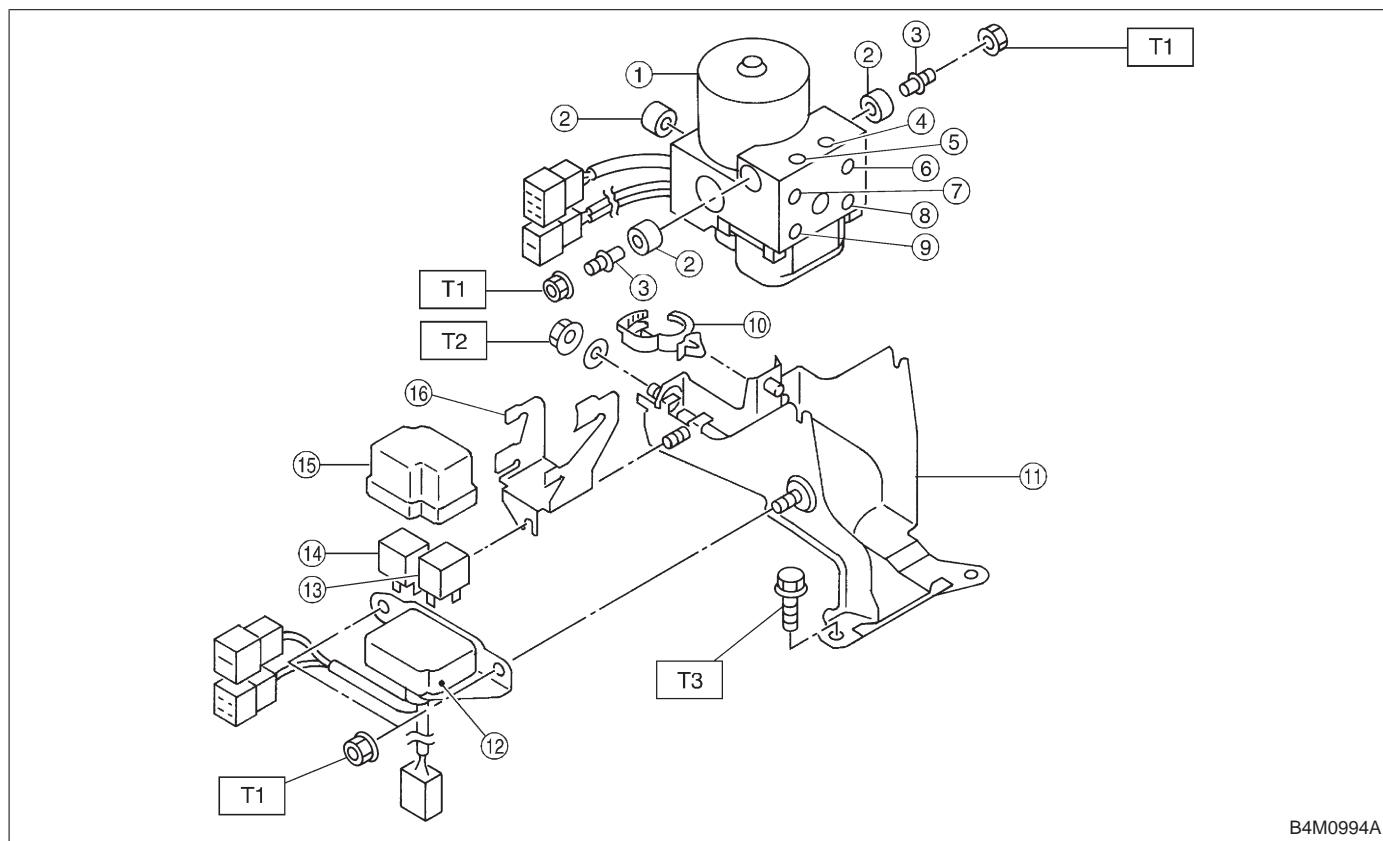
ABS sensor standard clearance:

$0.7 — 1.2 \text{ mm}$ ($0.028 — 0.047 \text{ in}$)

Tightening torque:

$32\pm10 \text{ N}\cdot\text{m}$ ($3.3\pm1.0 \text{ kg}\cdot\text{m}$, $24\pm7 \text{ ft-lb}$)

CAUTION:


Check the marks on the harness to make sure that no distortion exists. (RH: white, LH: yellow)

NOTE:

If the clearance is outside specifications, readjust.

12. Hydraulic Unit for ABS System

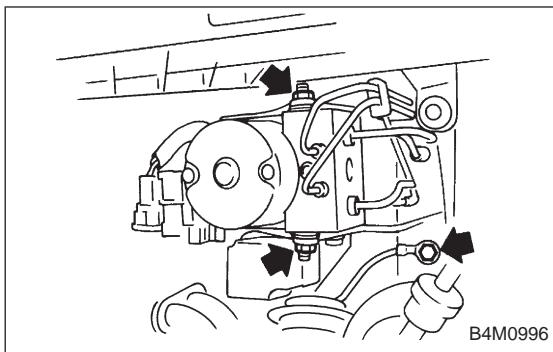
A: REMOVAL

B4M0994A

- ① Hydraulic control unit
- ② Damper
- ③ Stud bolt
- ④ Rear-RH outlet
- ⑤ Rear-LH outlet
- ⑥ Secondary inlet
- ⑦ Primary inlet
- ⑧ Front-LH outlet

- ⑨ Front-RH outlet
- ⑩ Cable clip
- ⑪ Bracket
- ⑫ Relay box
- ⑬ Motor relay
- ⑭ Valve relay
- ⑮ Cap
- ⑯ Connector bracket

Tightening torque: N·m (kg·m, ft·lb)

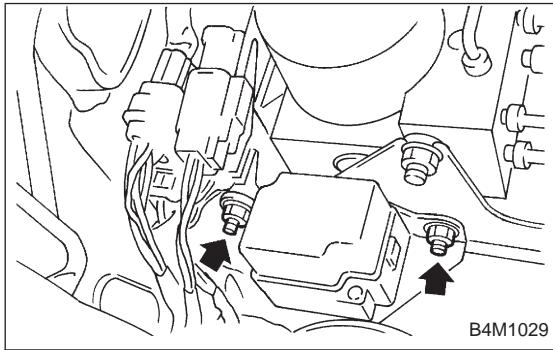

T1: 18 ± 5 (1.8 ± 0.5 , 13.0 ± 3.6)T2: 29 ± 7 (3.0 ± 0.7 , 21.7 ± 5.1)T3: 32 ± 10 (3.3 ± 1.0 , 24 ± 7)

1. HYDRAULIC UNIT

- 1) Disconnect ground cable from battery.
- 2) Remove air intake duct and canister from engine compartment to facilitate removal of hydraulic unit.
- 3) Disconnect connector from hydraulic unit.
- 4) Unlock cable clip.
- 5) Disconnect brake pipes from hydraulic unit.

CAUTION:

Wrap brake pipes with vinyl bag to avoid spilling brake fluid on vehicle body.

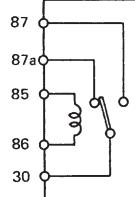
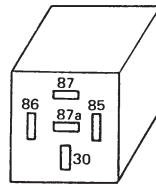
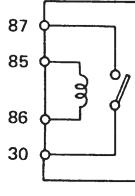
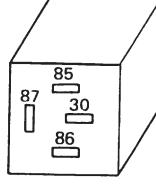
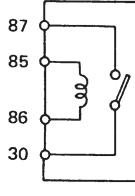
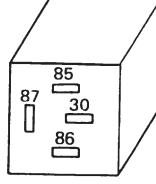
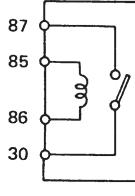
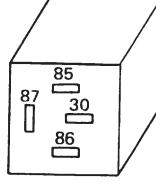

- 6) Remove nuts and bolt which secure hydraulic unit bracket, and remove hydraulic unit from engine compartment.

CAUTION:

- Hydraulic unit cannot be disassembled. Do not attempt to loosen bolts and nuts.
- Do not drop or bump hydraulic unit.
- Do not turn the hydraulic unit upside down or place it on its side.
- Be careful to prevent foreign particles from getting into hydraulic unit.
- When a new hydraulic unit is installed, apply a coat of rust-preventive wax (Nippeco LT or GB) to bracket attaching bolt after tightening.
- Do not pull harness disconnecting harness connector.

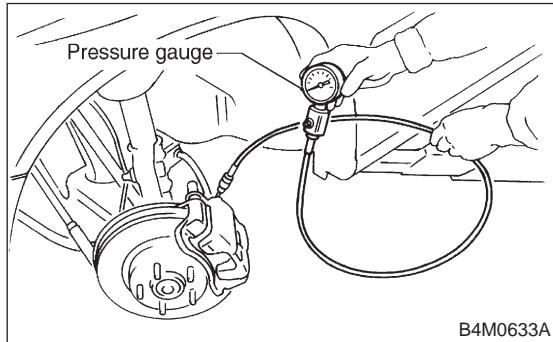
2. RELAY BOX

- 1) Disconnect ground cable from battery.
- 2) Remove air intake duct and canister from engine compartment to facilitate removal of relay box.









- 3) Disconnect connector from relay box.
- 4) Unlock cable clip.
- 5) Remove nuts which secure relay box, and remove relay box and connector bracket.

CAUTION:

Do not drop or bump relay box.


B: INSPECTION

- 1) Check connected and fixed condition of connector.
- 2) Check valve relay and motor relay for discontinuity or short circuits.

	Condition	Terminal number	Standard	Diagram	Terminal location
Valve relay	Turning off electricity.	85 — 86	103±10 Ω		
		30 — 87a	less than 0.5 Ω		
		30 — 87	more than 1 MΩ		
	Turning on electricity between 85 and 86. (DC 12 V)	30 — 87a	more than 1 MΩ		
		30 — 87	less than 0.5 Ω		
Motor relay	Turning off electricity.	85 — 86	80±8 Ω		
		30 — 87	more than 1 MΩ		
	Turning on electricity between 85 and 86. (DC 12 V)	30 — 87	less than 0.5 Ω		

C: CHECKING THE HYDRAULIC UNIT ABS OPERATION**1. CHECKING THE HYDRAULIC UNIT ABS OPERATION BY PRESSURE GAUGE**

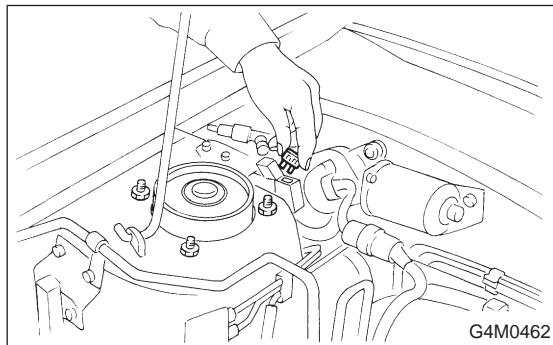
- 1) Lift-up vehicle and remove wheels.
- 2) Disconnect the air bleeder screws from the FL and FR caliper bodies.

- 3) Connect two pressure gauges to the FL and FR caliper bodies.

CAUTION:

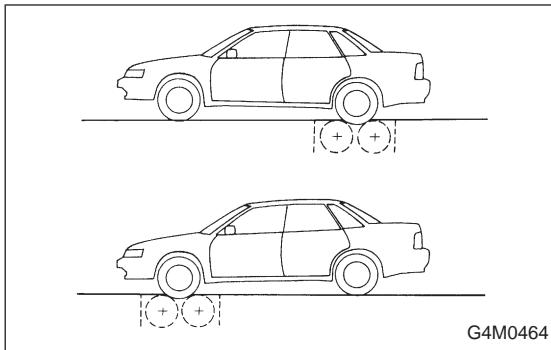
- Pressure gauges used exclusively for brake fluid must be used.
- Do not employ pressure gauge previously used for transmission since the piston seal is expanded which may lead to malfunction of the brake.

NOTE:


Wrap sealing tape around the pressure gauge.

- 4) Bleed air from the pressure gauges.
- 5) Perform ABS sequence control.
<Ref. to 4-4 [W12D1] or 4-4 [W12D2].>
- 6) When the hydraulic unit begins to work, and first the FL side performs decompression, holding, and compression, and then the FR side performs decompression, holding, and compression.

7) Read values indicated on the pressure gauge and check if the fluctuation of the values between decompression and compression meets the standard values. Also check if any irregular brake pedal tightness is felt.

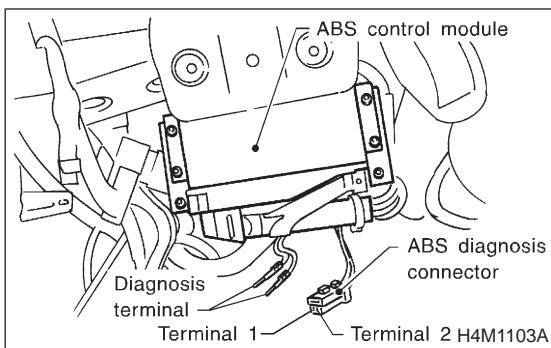

	Initial value	When decompressed	When compressed
Front wheel	3,432 kPa (35 kg/cm ² , 498 psi)	490 kPa (5 kg/cm ² , 71 psi) or less	3,432 kPa (35 kg/cm ² , 498 psi) or more
Rear wheel	3,432 kPa (35 kg/cm ² , 498 psi)	490 kPa (5 kg/cm ² , 71 psi) or less	3,432 kPa (35 kg/cm ² , 498 psi) or more

- 8) Remove pressure gauges from FL and FR caliper bodies.
- 9) Remove air bleeder screws from the RL and RR caliper bodies.
- 10) Connect the air bleeder screws to the FL and FR caliper bodies.
- 11) Connect two pressure gauges to the RL and RR caliper bodies.
- 12) Bleed air from the pressure gauges and the FL and FR caliper bodies.
- 13) Perform ABS sequence control.
<Ref. to 4-4 [W12D1] or 4-4 [W12D2].>
- 14) When the hydraulic unit begins to work, at first the RR side performs decompression, holding, and compression, and then the RL side performs decompression, holding, and compression.
- 15) Read values indicated on the pressure gauges and check if they meet the standard value.
- 16) After checking, remove the pressure gauges from caliper bodies.
- 17) Connect the air bleeder screws to RL and RR caliper bodies.
- 18) Bleed air from brake line.

2. CHECKING THE HYDRAULIC UNIT ABS OPERATION WITH BRAKE TESTER

- 1) In the case of AWD AT vehicles, install a spare fuse with the FWD connector in the engine compartment to simulate FWD vehicles.
- 2) Prepare for operating ABS sequence control. <Ref. to 4-4 [W12D1] or 4-4 [W12D2].>

- 3) Set the front wheels or rear wheels on the brake tester and set the select lever's position at "neutral".
- 4) Operate the brake tester.
- 5) Perform ABS sequence control. <Ref. to 4-4 [W12D1] or 4-4 [W12D2].>
- 6) Hydraulic unit begins to work; and check the following working sequence.
 - (1) The FL wheel performs decompression, holding, and compression in sequence, and subsequently the FR wheel repeats the cycle.
 - (2) The RR wheel performs decompression, holding, and compression in sequence, and subsequently the RL wheel repeats the cycle.
- 7) Read values indicated on the brake tester and check if the fluctuation of values, when decompressed and compressed, meet the standard values.


Unit: N (kg, lb)

	Initial value	When decompressed	When compressed
Front wheel	981 (100, 221)	490 (50, 110) or less	981 (100, 221) or more
Rear wheel	981 (100, 221)	490 (50, 110) or less	981 (100, 221) or more

- 8) After checking, also check if any irregular brake pedal tightness is felt.

D: ABS SEQUENCE CONTROL

- 1) Under the ABS sequence control, after the hydraulic unit solenoid valve is driven, the operation of the hydraulic unit can be checked by means of the brake tester or pressure gauge.
- 2) ABS sequence control can be started by diagnosis connector or select monitor.

1. OPERATIONAL GUIDELINES OF THE ABS SEQUENCE CONTROL WITH ABS DIAGNOSIS CONNECTOR

- 1) Connect diagnosis terminals to terminals No. 1 and No. 2 of the diagnosis connector beside driver's seat heater unit.
- 2) Set the speed of all wheels at 4 km/h (2 MPH) or less.
- 3) Turn ignition switch OFF.
- 4) Within 0.5 seconds after the ABS warning light goes out, depress the brake pedal and hold it immediately after ignition switch is turned to ON.

CAUTION:

Do not depress the clutch pedal.

NOTE:

- When the ignition switch is set to on, the brake pedal must not be depressed.
- Engine must not operate.

5) After completion of ABS sequence control, turn ignition switch OFF.

2. OPERATIONAL GUIDELINES OF THE ABS SEQUENCE CONTROL WITH SELECT MONITOR

- 1) Connect select monitor to data link connector beside driver's seat heater unit.
- 2) Turn ignition switch ON.
- 3) Put select monitor to ABS mode.

[F] [D] [1] [ENT]

B4M0635

**ABS FUNCTION
CHECK MODE**

B4M0997

**BRAKE ON
KEEP 100-150**

B4M0998

- 4) Press F D 1 ENT key.

- 5) The message shown in the figure is displayed.

- 6) The message shown in the figure is displayed as follows:

- (1) When using the brake tester, depress brake pedal with braking force of 981 N (100 kg, 221 lb).
- (2) When using the pressure gauge, depress brake pedal so as to make the pressure gauge indicate 3,432 kPa (35 kg/cm², 498 psi).

CAUTION:

Do not depress the clutch pedal.

MODE START

PRESS ENT KEY

B4M0999

- 7) When the message shown in the figure is displayed, press ENT key.
- 8) Check points will be displayed on select monitor.

FUNCTION START

UNABLE

B4M1000

- 9) When ABS sequence control cannot be started (by system malfunction, etc.), the message shown in the figure will be displayed.

NOTE:

Read the trouble codes. Repair faulty parts.

ABS FUNCTION

CHECK END

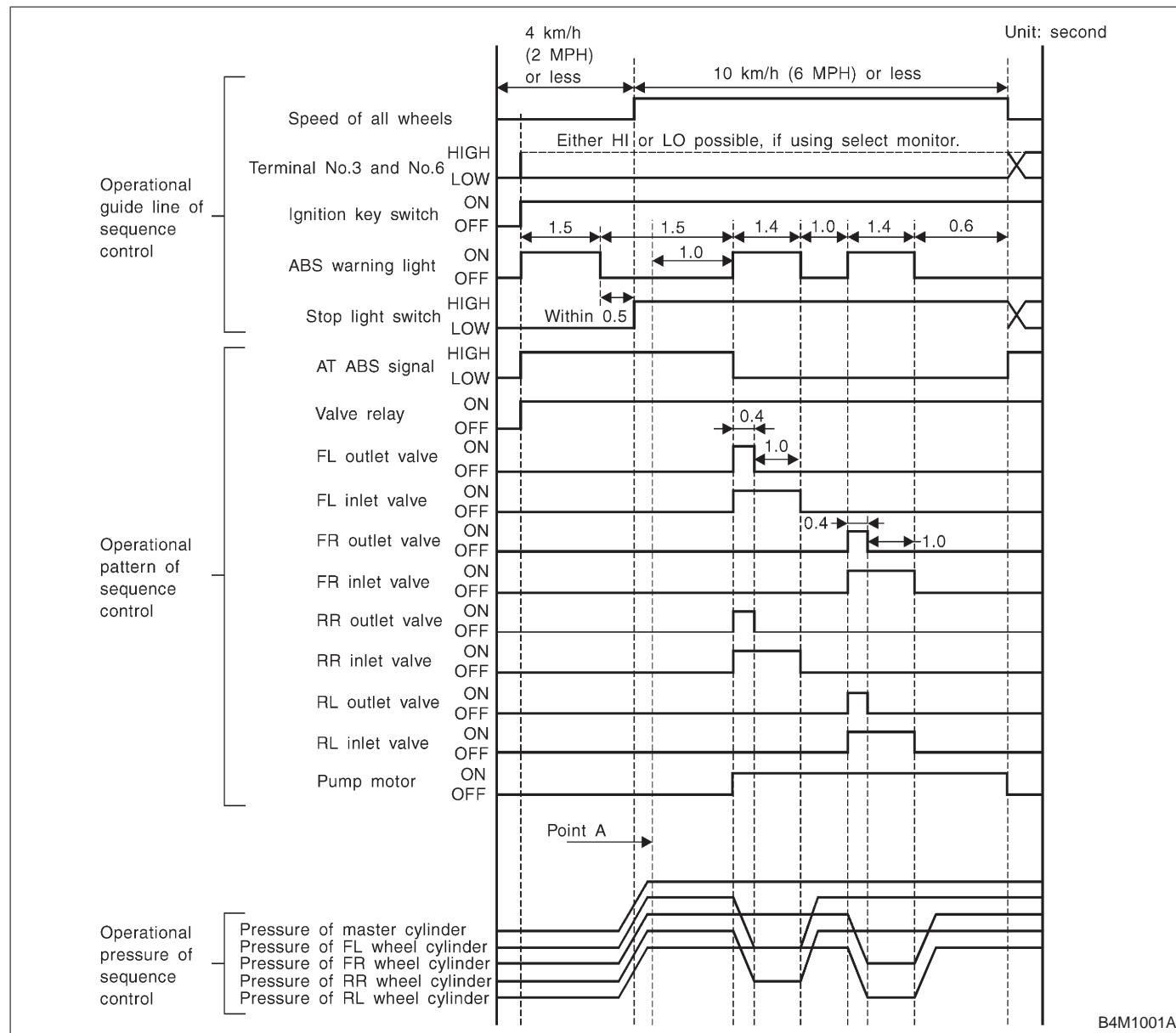
B4M1030

- 10) After completion of ABS sequence control.

MODE RESTART?

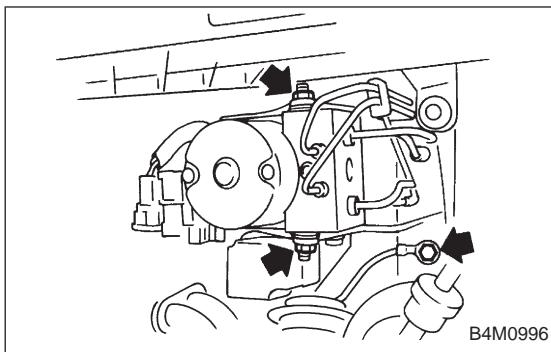
0 : YES 1 : NO

H4M1144


- 11) Press 0 key to start ABS sequence control again and press 1 key to end.

3. CONDITIONS FOR COMPLETION OF ABS SEQUENCE CONTROL

When the following conditions develop, the ABS sequence control stops and ABS operation is returned to the normal control mode.


- 1) When the speed of at least one wheel reaches 10 km/h (6 MPH).
- 2) When terminal No. 3 or No. 6 are separated from diagnosis terminals. (When select monitor is not used.)
- 3) When the brake pedal is released during sequence control and the braking lamp switch is set to off.
- 4) When brake pedal is depressed after ignition key is turned to ON, and before ABS warning light goes out. (When select monitor is not used.)
- 5) When brake pedal is not depressed after ignition key is turned to ON, and within 0.5 seconds after ABS warning light goes out. (When select monitor is not used.)
- 6) After completion of the sequence control.
- 7) When malfunction is detected. (When select monitor is used.)

4. CONDITIONS FOR ABS SEQUENCE CONTROL

NOTE:

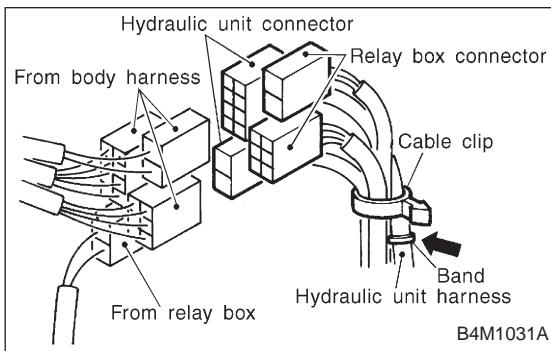
- When select monitor is used, control operation starts at point A. The patterns from IGN key ON to the point A show that operation is started by diagnosis connector.
- HIGH means high voltage.
- LOW means low voltage.

E: INSTALLATION

1. HYDRAULIC UNIT

- 1) Install hydraulic unit.

Tightening torque:


$18\pm 5 \text{ N}\cdot\text{m} (1.8\pm 0.5 \text{ kg}\cdot\text{m}, 13.0\pm 3.6 \text{ ft}\cdot\text{lb})$

- 2) Connect hydraulic unit ground cable to body.

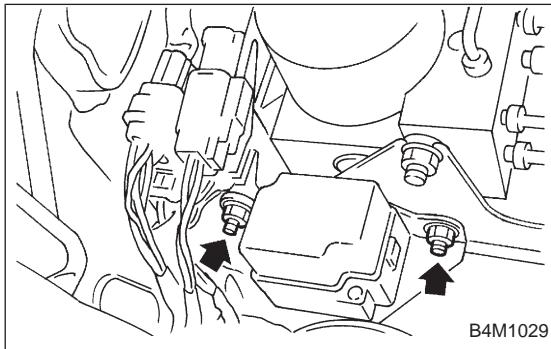
Tightening torque:

$32\pm 10 \text{ N}\cdot\text{m} (3.3\pm 1.0 \text{ kg}\cdot\text{m}, 24\pm 7 \text{ ft}\cdot\text{lb})$

- 3) Connect brake pipes to their correct hydraulic unit connections. <Ref. to 4-4 [W15A2].>

- 4) Secure hydraulic unit connector to connector bracket.

CAUTION:

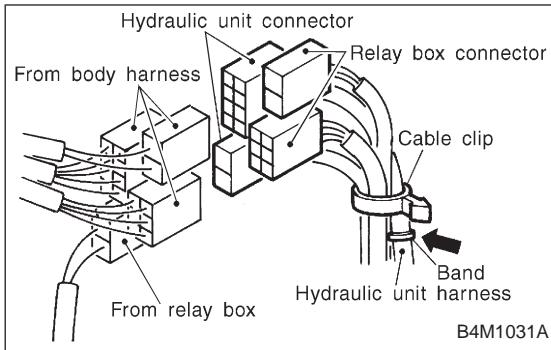

Align connector with mating receptacle.

- 5) Using cable clip, secure hydraulic unit harness to relay box harness.

CAUTION:

Make sure hydraulic unit harness band is secured beneath cable clip.

- 6) Connect connector to hydraulic unit.
- 7) Install canister.
- 8) Install air intake duct.
- 9) Connect ground cable to battery.
- 10) Bleed air from the brake system.



2. RELAY BOX

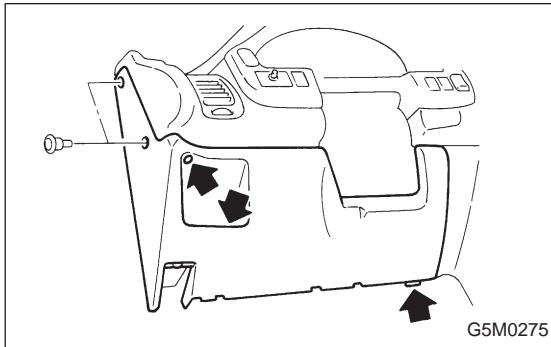
- 1) Install relay box and connector bracket.

Tightening torque:

$18\pm 5 \text{ N}\cdot\text{m} (1.8\pm 0.5 \text{ kg}\cdot\text{m}, 13.0\pm 3.6 \text{ ft}\cdot\text{lb})$

- Secure relay box connector to connector bracket.

CAUTION:


Align connector with mating receptacle.

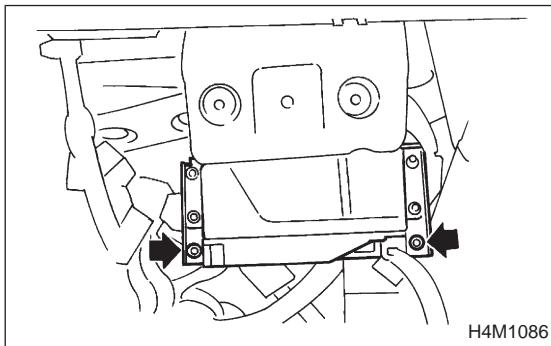
- Using cable clip, secure hydraulic unit harness to relay box harness.

CAUTION:

Make sure hydraulic unit harness band is secured beneath cable clip.

- Connect connector to relay box.
- Install canister.
- Install air intake duct.
- Connect ground cable to battery.

13. ABS Control Module


A: REMOVAL

- Turn ignition switch to OFF.
- Remove lower cover from instrument panel.
- Disconnect connector from ABSCM.

- Remove ABSCM.

CAUTION:

Do not drop or bump ABSCM.

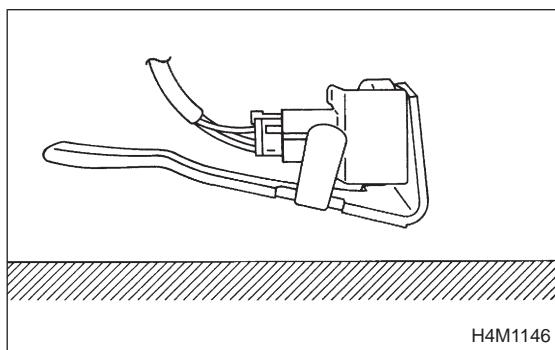
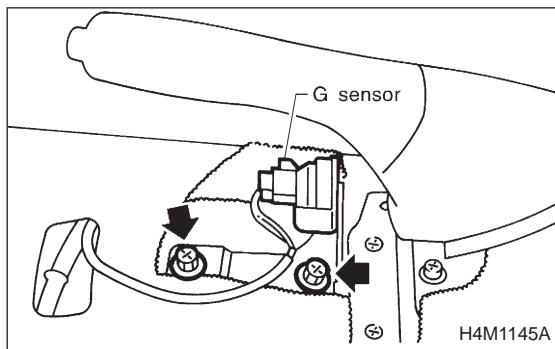
B: INSPECTION

Check that connector is connected correctly and that connector terminal sliding resistance is correct.

C: INSTALLATION

To install, reverse the removal procedure.

14. G Sensor for ABS System



A: REMOVAL AND INSTALLATION

- 1) Turn ignition switch to OFF.
- 2) Remove console box. <Ref. to 5-4 [W1A0].>
- 3) Disconnect connector from G sensor.

- 4) Remove G sensor from body.
- 5) To install, reverse the removal procedure.

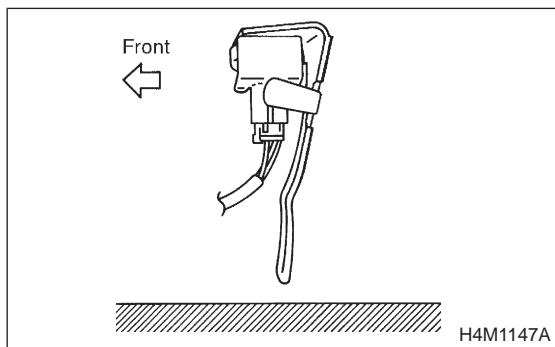
CAUTION:

Do not drop or bump G sensor.

B: INSPECTION WITH CIRCUIT TESTER

1. CHECK G SENSOR

- 1) Turn ignition switch to OFF.
- 2) Remove G sensor from vehicle.
- 3) Connect connector to G sensor.
- 4) Turn ignition switch to ON.
- 5) Measure voltage between G sensor connector terminals.


Connector & terminal

(P9) No. 2 (+) — No. 1 (-)

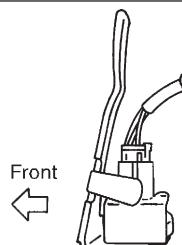
CHECK : *Is the voltage 2.3 ± 0.2 V when G sensor is horizontal?*

YES : Go to step 2.

NO : Replace G sensor.

2. CHECK G SENSOR (forwards)

Measure voltage between G sensor connector terminals.


Connector & terminal

(P9) No. 2 (+) — No. 1 (-)

CHECK : *Is the voltage 3.9 ± 0.2 V when G sensor is inclined forwards to 90° ?*

YES : Go to step 3.

NO : Replace G sensor.

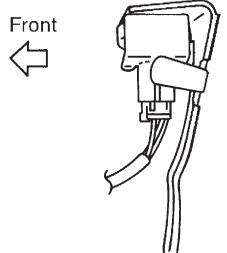
H4M1148A

3. CHECK G SENSOR (backwards)

Measure voltage between G sensor connector terminals.

Connector & terminal

(P9) No. 2 (+) — No. 1 (-)


CHECK : *Is the voltage 0.7 ± 0.2 V when G sensor is inclined backwards to 90° ?*

YES : G sensor is normal.

NO : Replace G sensor.

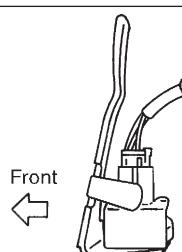
G-SENS (F10)
2.30 V

B4M0927

H4M1147A

2. CHECK G SENSOR (forwards)

1) Remove console box.


2) Remove G sensor from vehicle. (Do not disconnect connector.)

3) Read the select monitor display.

CHECK : *Is the indicated reading 3.9 ± 0.2 V when G sensor is inclined forwards to 90° ?*

YES : Go to step 3.

NO : Replace G sensor.

H4M1148A

3. CHECK G SENSOR (backwards)

Read the select monitor display.

CHECK : *Is the indicated reading 0.7 ± 0.2 V when G sensor is inclined backwards to 90° ?*

YES : G sensor is normal.

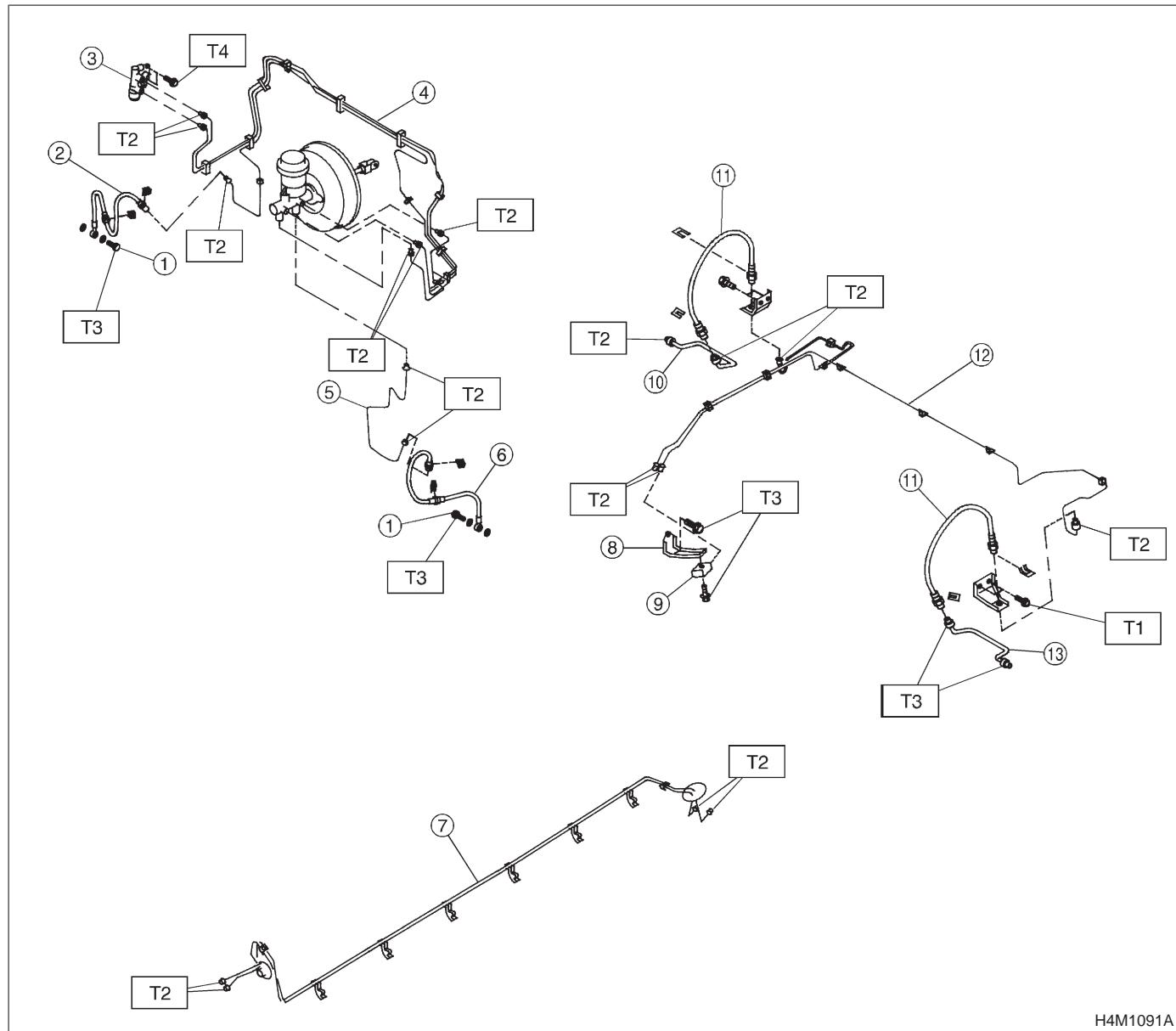
NO : Replace G sensor.

15. Brake Hose and Pipe AIRBAG

SUPPLEMENTAL RESTRAINT SYSTEM "AIRBAG"

Airbag system wiring harness is routed near the center brake pipe.

CAUTION:


- All Airbag system wiring harness and connectors are colored yellow. Do not use electrical test equipment on these circuit.
- Be careful not to damage Airbag system wiring harness when servicing the center brake pipe.

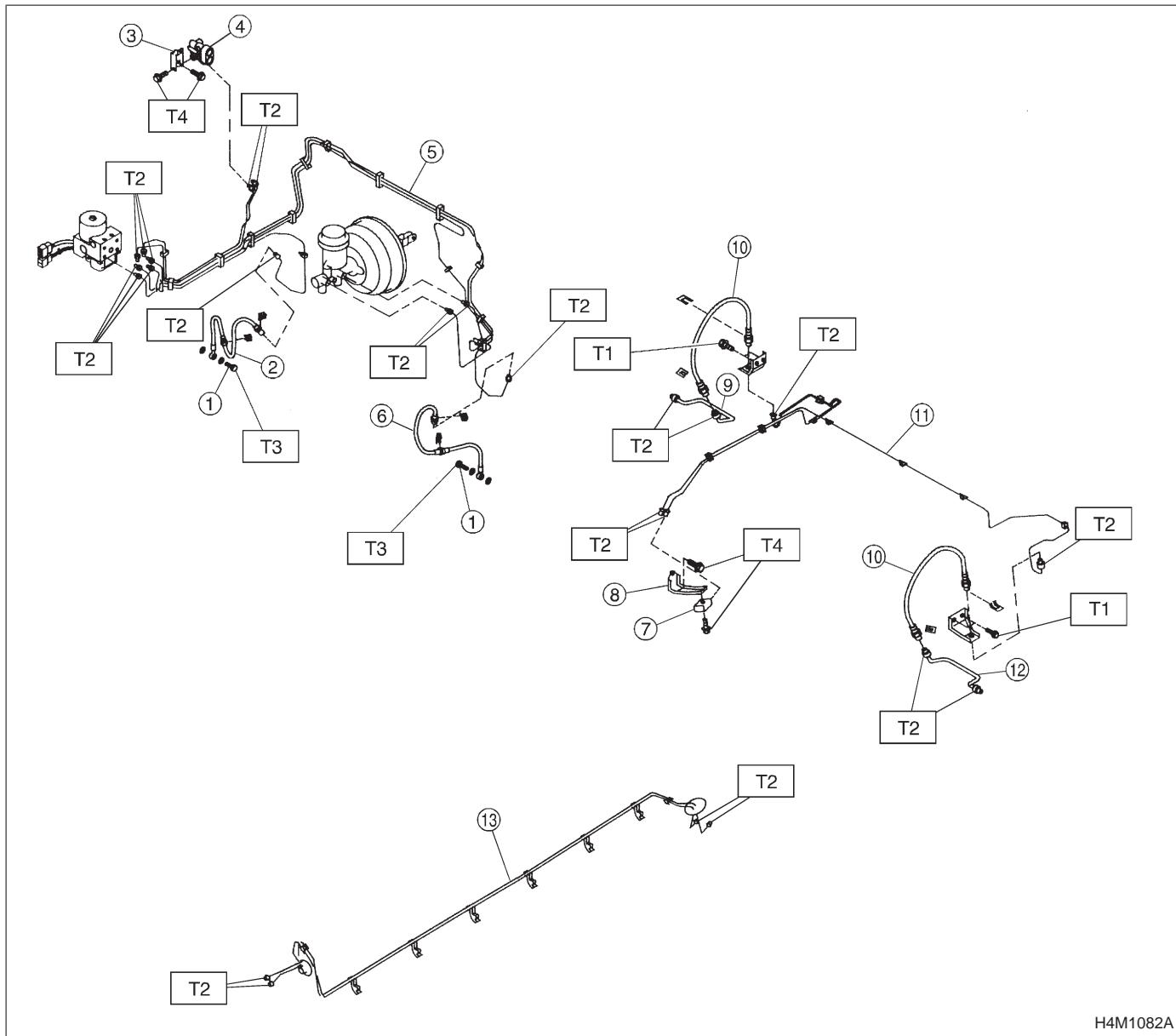
A: REMOVAL AND INSTALLATION

CAUTION:

- When removing and installing the brake pipe, make sure that it is not bent.
- After installing the brake pipe and hose, bleed the air.
- After installing the brake hose, make sure that it does not touch the tire or suspension assembly, etc.

1. MODELS WITHOUT ABS

H4M1091A


- ① Union bolt
- ② Front brake hose RH
- ③ Proportioning valve
- ④ Front brake pipe ASSY
- ⑤ Front adapter pipe
- ⑥ Front brake hose LH
- ⑦ Center brake pipe ASSY

- ⑧ Connector bracket
- ⑨ Two-way connector
- ⑩ Rear brake pipe RH
- ⑪ Rear brake hose
- ⑫ Rear brake pipe ASSY
- ⑬ Rear brake pipe LH

Tightening torque: N·m (kg·m, ft·lb)

T1: 13 ± 3 (1.3 ± 0.3 , 9.4 ± 2.2)
 T2: 14.7^{+3}_{-2} ($1.5^{+0.3}_{-0.2}$, $10.8^{+2.2}_{-1.4}$)
 T3: 18 ± 3 (1.8 ± 0.3 , 13.0 ± 2.2)
 T4: 18 ± 5 (1.8 ± 0.5 , 13.0 ± 3.6)

2. MODELS WITH ABS

① Union bolt	⑧ Connector bracket
② Front brake hose RH	⑨ Rear brake pipe RH
③ Valve bracket	⑩ Rear brake hose
④ Proportioning valve	⑪ Rear brake pipe ASSY
⑤ Front brake pipe ASSY	⑫ Rear brake pipe LH
⑥ Front brake hose LH	⑬ Center brake pipe ASSY
⑦ Two-way connector	

Tightening torque: N·m (kg·m, ft·lb)T1: 13 ± 3 (1.3 ± 0.3 , 9.4 ± 2.2)T2: 15 ± 3 (1.5 ± 0.3 , 10.8 ± 2.2)T3: 18 ± 3 (1.8 ± 0.3 , 13.0 ± 2.2)T4: 18 ± 5 (1.8 ± 0.5 , 13.0 ± 3.6)

1. Entire Brake System

Trouble and possible cause	Corrective action
1. Insufficient braking	
(1) Fluid leakage from the hydraulic mechanism	Repair or replace (cup, piston seal, piston boot, master cylinder piston kit, pipe or hose).
(2) Entry of air into the hydraulic mechanism	Bleed the air.
(3) Excessively wide shoe clearance	Adjust the clearance.
(4) Wear, deteriorated surface material, adhering water or fluid on the lining	Replace, grind or clean.
(5) Improper operation of master cylinder, disc caliper, brake booster or check valve	Correct or replace.
2. Unstable or uneven braking	
(1) Fluid on the lining, drum or rotor	Eliminate cause of fluid leakage, clean, or replace.
(2) Drum or rotor eccentricity	Correct or replace the drum or rotor.
(3) Worn brake drum, or damage to the drum caused by sand	Correct by grinding, or replace.
(4) Improper lining contact, deteriorated surface material, improper inferior material, or wear	Correct by grinding, or replace.
(5) Deformed back plate	Correct or replace.
(6) Improper tire inflation	Inflate to correct pressure.
(7) Disordered wheel alignment	Adjust alignment.
(8) Loosened back plate or the support installing bolts	Retighten.
(9) Loosened wheel bearing	Retighten to normal tightening torque or replace.
(10) Trouble in the hydraulic system	Replace the cylinder, brake pipe or hose.
(11) Uneven effect of the parking brake	Check, adjust, or replace the rear brake and cable system.
3. Excessive pedal stroke	
(1) Entry of air into the hydraulic mechanism	Bleed the air.
(2) Excessive play in the master cylinder push rod	Adjust.
(3) Fluid leakage from the hydraulic mechanism	Repair or replace (cup, piston seal, piston boot, master cylinder piston kit, pipe or hose).
(4) Improperly adjusted shoe clearance	Adjust.
(5) Improper lining contact or worn lining	Correct or replace.

Trouble and possible cause	Corrective action
4. Brake dragging or improper brake return	
(1) Insufficient pedal play	Adjust play.
(2) Improper master cylinder return	Clean or replace the cylinder.
(3) Clogged hydraulic system	Replace.
(4) Improper return or adjustment of parking brake	Correct or adjust.
(5) Weakened spring tension or breakage of shoe return spring	Replace the spring.
(6) Excessively narrow shoe clearance	Adjust the clearance.
(7) Improper disc caliper operation	Correct or replace.
(8) Improper adjusted wheel bearing	Adjust or replace.
5. Brake noise (1) (creak sound)	
(1) Hardened or deteriorated lining	Replace the shoe assembly or pad.
(2) Worn lining	Replace the shoe assembly or pad.
(3) Loosened back plate or the support installing bolts	Retighten.
(4) Loose wheel bearing	Retighten to normal tightening torque.
(5) Dirty drum or rotor	Clean the drum or rotor, or clean and replace the brake assembly.
6. Brake noise (2) (hissing sound)	
(1) Worn lining	Replace the shoe assembly or pad.
(2) Improper installed shoe or pad	Correct or replace the shoe assembly or pad.
(3) Loose or bent drum or rotor	Retighten or replace.
7. Brake noise (3) (click sound)	
In the case of the disc brake:	
(1) Excessively worn pad or the support	Replace the pad or the support.
In the case of the drum brake:	
(1) Excessively worn shoe ridge	Replace the back plate.
(2) Lack of oil on the shoe ridge surface and anchor	Add more grease.