

1. General

A: NON-TURBO MODELS

- The clutch control operates the release fork using the hydraulic pressure generated in the master cylinder when the pedal is depressed.
- The clutch itself is a push type clutch. When the clutch pedal is depressed, the self-aligning release bearing is caused to slide on a guide pressing the center of the diaphragm spring. The warped diaphragm spring disengages the pressure plate from the clutch disc. The clutch using a diaphragm spring has the advantage of little variation in push load even when the clutch disc facing is worn. The diaphragm spring is located inside the clutch cover.
- The clutch has a clutch disc between the flywheel and the pressure plate.
- Inside the clutch cover, there is a cover and a pressure plate combined with each other by means of strap plates, which also serve to prevent the pressure plate from relatively turning.

B: TURBO MODELS

- Turbo models adopt a clutch system which is appropriate for increased clutch load.
- The clutch control operates the release fork using the hydraulic pressure generated in the master cylinder when the clutch pedal is depressed.
- The clutch itself is a pull type clutch. When the clutch pedal is depressed, the self-aligning release bearing is caused to slide on a guide pulling the center of the diaphragm spring. The warped diaphragm spring disengages the pressure plate from the clutch disc. The clutch using a diaphragm spring has the advantage of little variation in push load even when the clutch disc facing is worn. The diaphragm spring is located inside the clutch cover.
- The clutch has a clutch disc between the flywheel and the pressure plate.
- Inside the clutch cover, there is a cover and a pressure plate combined with each other by means of strap plates, which also serve to prevent the pressure plate from relatively turning against to the clutch cover.