

|            |              |                                                                    |
|------------|--------------|--------------------------------------------------------------------|
| <b>DTC</b> | <b>P0327</b> | <b>Knock Sensor 1 Circuit Low Input (Bank 1 or Single Sensor)</b>  |
| <b>DTC</b> | <b>P0328</b> | <b>Knock Sensor 1 Circuit High Input (Bank 1 or Single Sensor)</b> |
| <b>DTC</b> | <b>P0332</b> | <b>Knock Sensor 2 Circuit Low Input (Bank 2)</b>                   |
| <b>DTC</b> | <b>P0333</b> | <b>Knock Sensor 2 Circuit High Input (Bank 2)</b>                  |

## DESCRIPTION

ES

A flat type knock sensor (non-resonant type) can detect vibrations in a wide band of frequency (about 6 kHz to 15 kHz) and has the following features:

- Knock sensors are fitted on the cylinder block to detect the engine knocking.
- The sensor contains a piezoelectric element which generates a voltage when the cylinder block vibrates due to knocking. If engine knocking occurs, the ignition timing is retarded to suppress it.

| DTC No.        | DTC Detection Condition                                    | Trouble Area                                                                                                                           |
|----------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| P0327<br>P0332 | Output voltage of the knock sensor 1 or 2 is 0.5 V or less | <ul style="list-style-type: none"> <li>• Short in knock sensor 1 or 2 circuit</li> <li>• Knock sensor 1 or 2</li> <li>• ECM</li> </ul> |
| P0328<br>P0333 | Output voltage of the knock sensor 1 or 2 is 4.5 V or more | <ul style="list-style-type: none"> <li>• Open in knock sensor 1 or 2 circuit</li> <li>• Knock sensor 1 or 2</li> <li>• ECM</li> </ul>  |

## MONITOR DESCRIPTION

The knock sensor, located on the cylinder block, detects spark knock. When spark knock occurs, the sensor picks up vibrations in a specific frequency range. When the ECM detects the voltage in this frequency range, it retards the ignition timing to suppress the spark knock.

The ECM also senses background engine noise with the knock sensor and uses this noise to check for faults in the sensor. If the knock sensor signal level is too low for more than 10 seconds, and if the knock sensor output voltage is out of normal range, the ECM interprets this as a fault in the knock sensor and sets a DTC.

## MONITOR STRATEGY

|                                         |                                                                                                                                                                                                                                        |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related DTCs                            | P0327: Knock Sensor (Bank 1) Range Check (Low voltage)<br>P0328: Knock Sensor (Bank 1) Range Check (High voltage)<br>P0332: Knock Sensor (Bank 2) Range Check (Low voltage)<br>P0333: Knock Sensor (Bank 2) Range Check (High voltage) |
| Required sensors / components (Main)    | Knock Sensor                                                                                                                                                                                                                           |
| Required sensors / components (Related) | MAF meter, Crankshaft position sensor, ECT sensor                                                                                                                                                                                      |
| Frequency of operation                  | Continuous                                                                                                                                                                                                                             |
| Duration                                | 1 second                                                                                                                                                                                                                               |
| MIL operation                           | Immediate                                                                                                                                                                                                                              |
| Sequence operation                      | None                                                                                                                                                                                                                                   |

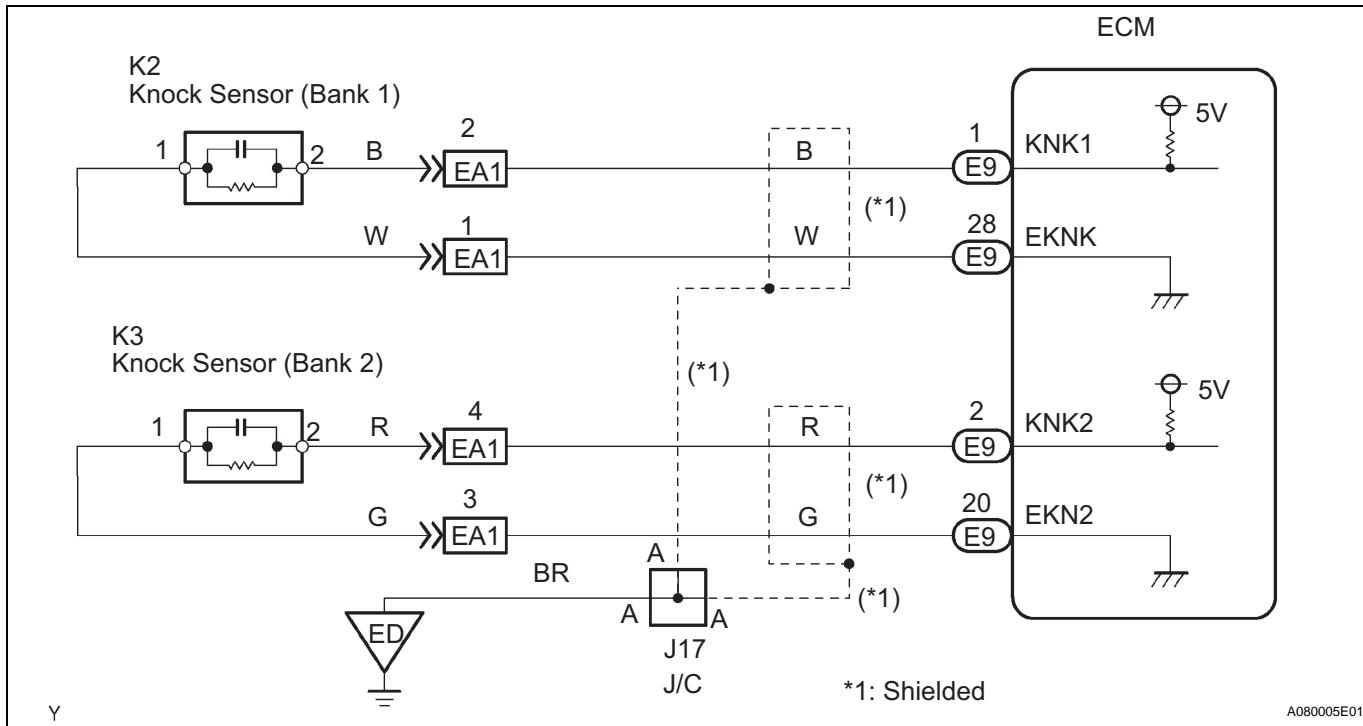
## TYPICAL ENABLING CONDITIONS

|                                                          |                   |
|----------------------------------------------------------|-------------------|
| The monitor will run whenever these DTCs are not present | None              |
| Battery voltage                                          | 10.5 V or more    |
| Time after engine start                                  | 5 seconds or more |

|                 |     |
|-----------------|-----|
| Ignition switch | ON  |
| Starter         | OFF |

## TYPICAL MALFUNCTION THRESHOLDS

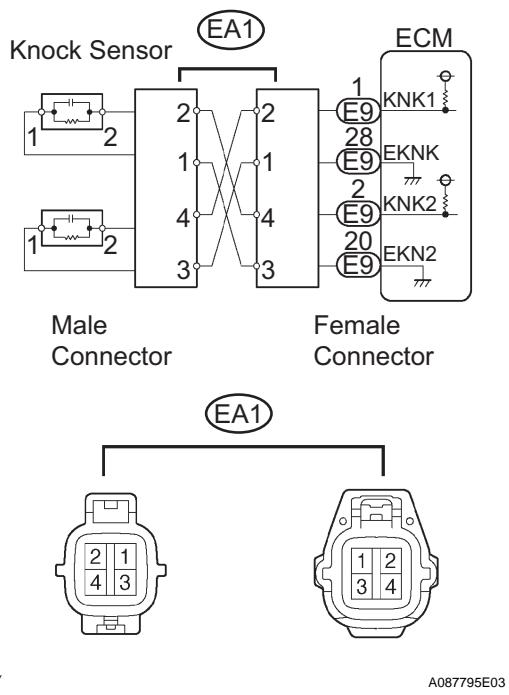
### Knock Sensor Range Check (Low voltage):


|                      |                 |
|----------------------|-----------------|
| Knock sensor Voltage | Less than 0.5 V |
|----------------------|-----------------|

### Knock Sensor Range Check (High voltage):

|                      |                 |
|----------------------|-----------------|
| Knock sensor voltage | More than 4.5 V |
|----------------------|-----------------|

## WIRING DIAGRAM


ES



### HINT:

- DTC P0327 and P0328 are for the bank 1 knock sensor circuit.
- DTC P0332 and P0333 are for the bank 2 knock sensor circuit.
- Read freeze frame data using the intelligent tester. The ECM records vehicle and driving condition information as freeze frame data the moment a DTC is stored. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was LEAN or RICH, and other data from the time the malfunction occurred.

## 1 READ OUTPUT DTC (CHECK KNOCK SENSOR CIRCUIT)



(a) Disconnect the EA1 connector.  
 (b) Using lead wires, connect the EA1 terminals as follows.

Male Connector - Female Connector

Terminal 2 - Terminal 4

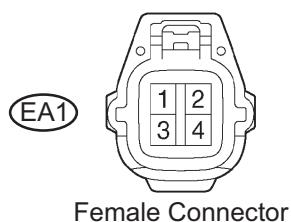
Terminal 1 - Terminal 3

Terminal 4 - Terminal 2

Terminal 3 - Terminal 1

(c) Warm up the engine.  
 (d) Run the engine at 3,000 rpm for 10 seconds or more.  
 (e) Check the DTC (See page [ES-28](#)).

### Result


| Display                                                                                                        | Proceed to |
|----------------------------------------------------------------------------------------------------------------|------------|
| DTC same as when vehicle brought in<br>P0327, P0328 → P0327, P0328<br>or<br>P0332, P0333 → P0332, P0333        | A          |
| DTC different from when vehicle brought in<br>P0327, P0328 → P0332, P0333<br>or<br>P0332, P0333 → P0327, P0328 | B          |

**Go to step 4**

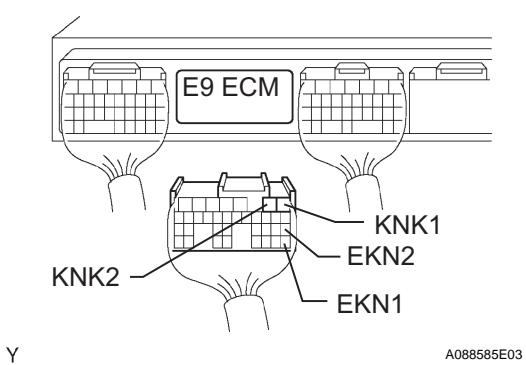
**A**

## 2 CHECK HARNESS AND CONNECTOR (EA1 FEMALE CONNECTOR - ECM)

Wire Harness Side:

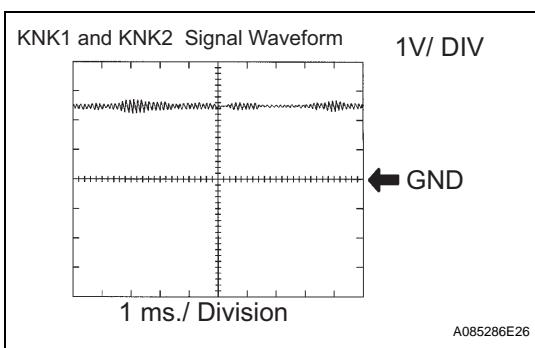
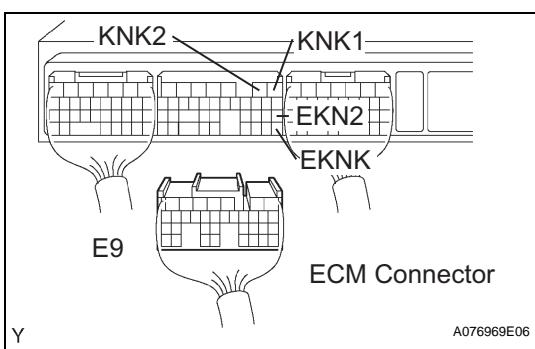


(a) Disconnect the EA1 connector.  
 (b) Disconnect the E9 ECM connector.  
 (c) Measure the resistance of the wire harness side connector.


### Standard resistance

| Tester Connection                                                                                                                                                                                                                      | Specified Condition |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 2 of EA1 female connector - E9-1 (KNK1)<br>1 of EA1 female connector - E9-28 (EKNK)<br>4 of EA1 female connector 4 - E9-2 (KNK2)<br>3 of EA1 female connector - E9-20 (EKN2)                                                           | Below 1 Ω           |
| 2 of EA1 female connector or E9-1 (KNK1) - Body ground<br>1 of EA1 female connector or E9-28 (EKNK) - Body ground<br>4 of EA1 female connector or E9-2 (KNK2) - Body ground<br>3 of EA1 female connector or E9-20 (EKN2) - Body ground | 10 kΩ or higher     |

**NG**



**REPAIR OR REPLACE HARNESS OR CONNECTOR**

**ES**



OK

## 3 CHECK ECM (KNK1, KNK2 VOLTAGE)



(a) Disconnect the E9 ECM connector.  
 (b) Turn the ignition switch ON.

(c) Measure the voltage of ECM terminals.  
**Standard voltage**

| Tester Connection                                        | Specified Condition |
|----------------------------------------------------------|---------------------|
| E9-1 (KNK1) - E9-28 (EKNK)<br>E9-2 (KNK2) - E9-20 (EKN2) | 4.5 to 5.5 V        |

Reconnect the E9 ECM connector.

HINT:

Reference: Inspection using an oscilloscope.

After warming up, run the engine at 4,000 rpm and check the waveform between terminal KNK1 and EKNK of the ECM connector.

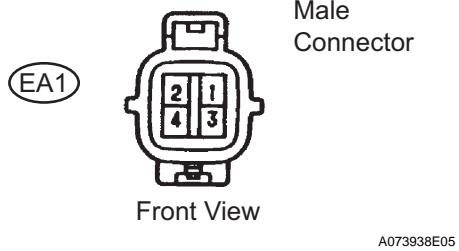
**Standard voltage**

| Tester Connection                                        | Specified Condition          |
|----------------------------------------------------------|------------------------------|
| E9-1 (KNK1) - E9-28 (EKNK)<br>E9-2 (KNK2) - E9-20 (EKN2) | Correct waveform is as shown |

**NOTICE:**

Fault may be intermittent. Check harness and connectors carefully and retest.

NG


REPLACE ECM

OK

## CHECK FOR INTERMITTENT PROBLEMS

#### 4 INSPECT KNOCK SENSOR (RESISTANCE)

Wire Harness Side:



(a) Disconnect the EA1 connector.

(b) Measure the resistance between the terminals of the EA1 male connector.

##### Standard resistance

| Tester Connection           | Specified Condition |
|-----------------------------|---------------------|
| 2 - 1 of EA1 male connector | 120 to 280 kΩ       |
| 4 - 3 of EA1 male connector |                     |

OK

CHECK FOR INTERMITTENT PROBLEMS

NG

ES

#### 5 CHECK HARNESS AND CONNECTOR (EA1 MALE CONNECTOR - KNOCK SENSOR)

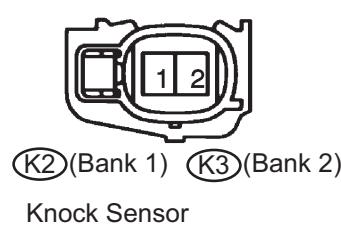
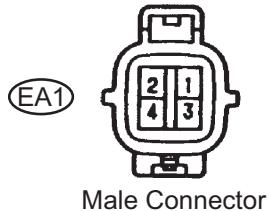
##### HINT:

- If DTC P0327 has changed to P0328, or if DTC P0332 has changed to P0333, check the knock sensor circuit on the bank 1 side.
- If DTC P0332 has changed to P0327, or if DTC P0333 has changed to P0338, check the knock sensor circuit on the bank 2 side.

(a) Disconnect the EA1 connector.

(b) Disconnect the K2 or K3 knock sensor connector.

(c) Measure the resistance of the wire harness side connectors.



##### Standard resistance

| Tester Connection                                                                                                                                                                                | Specified Condition |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 2 of EA1 male connector - K2-2<br>1 of EA1 male connector - K2-1<br>4 of EA1 male connector - K3-2<br>3 of EA1 male connector - K3-1                                                             | Below 1 Ω           |
| 2 of EA1 male connector or K2-2 - Body ground<br>1 of EA1 male connector or K2-1 - Body ground<br>4 of EA1 male connector or K3-2 - Body ground<br>3 of EA1 male connector or K3-1 - Body ground | 10 kΩ or higher     |

NG

REPAIR OR REPLACE HARNESS AND CONNECTOR

Wire Harness Side:



A085847E03

OK

REPLACE KNOCK SENSOR