E16AA---

ENGINE ELECTRICAL

CONTENTS

CHARGING SYSTEM	2
SPECIFICATIONS	2
General Specifications	. 2
Service Specifications	2
SPECIAL TOOLS	2
SERVICE ADJUSTMENT PROCEDURES	. 3
Inspection	. 3
Voltage Drop Test of Alternator Output Line	. 3
Output Current Test	
Regulated Voltage Test	
Inspection Using an Analyzer	
ALTERNATOR <sohc></sohc>	, 7
ALTERNATOR <dohc></dohc>	. 8
STARTING SYSTEM	9
SPECIFICATIONS	. 9
General Specifications	. 9
SERVICE ADJUSTMENT PROCEDURES	. 9
Starter Relay Inspection Vehicles with Theft-alarm System>	. 9

IGNITION SYSTEM
SPECIFICATIONS
General Specifications
Service Specifications 10
SPECIAL TOOLS 10
SERVICE ADJUSTMENT PROCEDURES
Ignition Coil Inspection 10
Power Transistor Inspection 11
Resistive Code Inspection 11
Checking the Detonation Sensor 11
Spark Plug Check and Cleaning 12
Inspection Using an Analyzer (Secondary and Primary Ignition Voltage Waveforms)
Top Dead Centre Sensor
Refer to GROUP 13 (On-vehicle Inspection of MPI Components)
Crank Angle Sensor
Ignition Timing Adjustment

CONTINUED ON NEXT PAGE

SERVICE ADJUSTMENT PROCEDURES

<dohc></dohc>	13
Ignition Coil Inspection	13
Power Transistor Inspection	13
Resistive Code Inspection	14
Checking the Detonation Sensor	15
Spark Plug Check	15
Inspection Using an Analyzer (Secondary and Primary Ignition Voltage Waveforms)	16
Top Dead Centre Sensor	
Refer to GROUP (On-vehicle Inspect of MPI Component)	ion

Camshaft Position Sensor	
	Refer to GROUP 13
(On-vehicle Inspection
	of MPI Components)
Crank Angle Sensor	
	Refer to GROUP 13
	On-vehicle Inspection
	of MPI Components)
Ignition Timing Adjustmen	t
	Refer to GROUP 11
CRANK ANGLE SENSOR	04
CRANK ANGLE SENSOR POSITION SENSOR	AND CAMSHAFT

,

NOTES

.

Not cold climate zone

Туре	Battery voltage sensing	Battery voltage sensing
Rated out put V/		12/110
Voltage regulator	Electronic built-in type	Electronic built-in type

Cold climate zone

<DOHC>

Items

ltems		Vehicles without ECS	Vehicles with ECS
Type	V/A	Battery voltage sensing	Battery voltage sensing
Rated out put		12/90	12/110
Voltage regulator		Electronic built-in type	Electronic built-in type

SERVICE SPECIFICATIONS

Items		Specifications
Alternator		
Standard value		
Regulated voltage		
Ambient temp. at voltage regulator	V	
-20°C (-4°F)		14.2–15.4
20°C (68°F)		13.9–14.9
60°C (140°F)		13.4–14.6
80°C (176°F)		13.1–14.5
Limit		
Output current		70 % of nominal output current

SPECIAL TOOL

ТооІ	Number	Name	Use
	MD998467	Alternator harness connector	Checking the alternator (S terminal voltage)

16-2 **CHARGING SYSTEM**

ALTERNATOR <SOHC>

SPECIFICATIONS

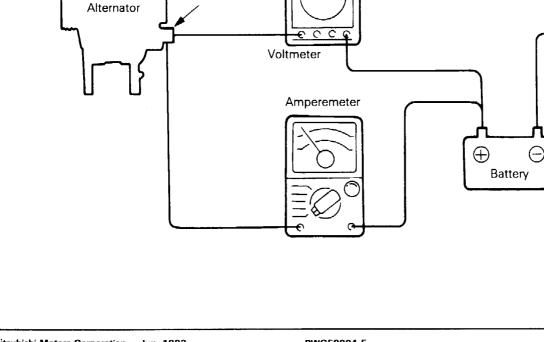
GENERAL SPECIFICATIONS

E16BA--

E16BF--

E1688--

SERVICE ADJUSTMENT PROCEDURES VOLTAGE DROP TEST OF ALTERNATOR OUTPUT LINE


This test determines whether the wiring from the alternator "B" terminal to the battery (+) terminal (including the fusible link) is in a good condition or not. (1) Always be sure to check the following before the

- test.
- Alternator installation
- Alternator drive belt tension (Refer to GROUP 11 – Service Adjustment Procedures.)
- Fusible link
- Abnormal noise from the alternator while the engine is running
- (2) Turn the ignition switch to the OFF position.
- (3) Disconnect the negative battery cable.
- (4) Disconnect the alternator output wire from the alternator "B" terminal and connect a DC test ammeter with a range of 0 100 A in series between the "B" terminal and the disconnected output wire. (Connect the (+) lead of the ammeter to the "B" terminal, and then connect the (-) lead of the ammeter to the disconnected output wire.)

NOTE

A clamp-type ammeter which enables measurements to be taken without disconnecting the alternator output wire should be recommended. Because, if a vehicle in which the voltage may have dropped due to an imperfect connection at the alternator "B" terminal is being inspected, and so if the alternator "B" terminal is loosened and a test ammeter is connected, the connection will be complete at the time of connection and the possibility of finding problems will be reduced.

(5) Connect a digital-type voltmeter between the alternator "B" terminal and the battery (+) terminal. (Connect the (+) lead of the voltmeter to the "B" terminal, and then connect the (-) lead of the voltmeter to the battery (+) cable.)

П

Ħ

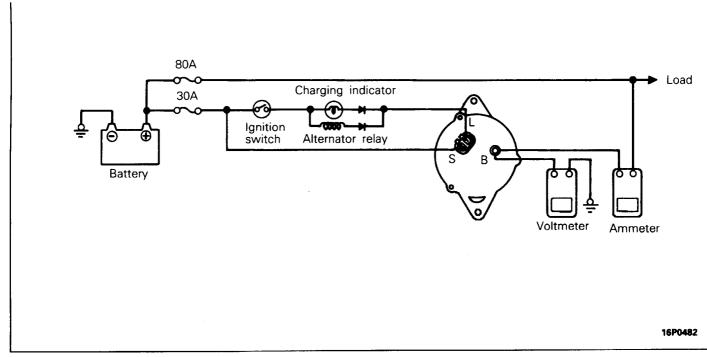
Terminal B

E16BGAG

16-4

- (6) Connect a tachometer. (For the procedure for connecting the tachometer, refer to GROUP 11 – Service Adjustment Procedures.)
- (7) Reconnect the negative battery cable.
- (8) Leave the hood open.
- (9) Start the engine.
- (10) With the engine running at 2500 r/min., turn the headlamps and other lamps on and off to adjust the alternator load so that the value displayed on the ammeter is slightly above 30 A.

Adjust the engine speed by gradually decreasing it until the value displayed on the ammeter is 30 A. Take a reading of the value displayed on the voltmeter at this time.


Limit value: Max. 0.3 V

NOTE

When the alternator output is high and the value displayed on the ammeter does not decrease until 30A, set the value to 40A. Read the value dis-

played on the voltmeter at this time. In this case the limit value becomes max. 0.4V.

- (11) If the value displayed on the voltmeter is above the limit value, there is probably a malfunction in the alternator output wire, so check the wiring between the alternator "B" terminal and the battery (+) terminal (including fusible link). If a terminal is not sufficiently tight or if the harness has become discolored due to overheating, repair and then test again.
- (12) After the test, run the engine at idle.
- (13)Turn off all lamps and turn the ignition switch to the OFF position.
- (14) Disconnect the negative battery cable.
- (15) Disconnect the ammeter, voltmeter and tachometer.
- (16)Connect the alternator output wire to the alternator "B" terminal.
- (17)Connect the negative battery cable.

OUTPUT CURRENT TEST

This test determines whether the alternator outputs normal current.

- (1) Before the test, always be sure to check the following.
 - Alternator installation
 - Battery (Refer to GROUP 54 Battery.) NOTE

The battery to be used should be slightly discharged. The load in a fully-charged battery will be insufficient and the test may not be able to be carried out correctly.

- Alternator drive belt tension (Refer to GROUP 11 – Service Adjustment Procedures.) dures.)
- Fusible link
- Abnormal noise from the alternator while the engine is running.

(2) Turn the ignition switch to the OFF position.

- (3) Disconnect the negative battery cable.
- (4) Disconnect the alternator output wire from the alternator "B" terminal and connect a DC test ammeter with a range of 0 100 A in series between the "B" terminal and the disconnected output wire. (Connect the (+) lead of the ammeter to the "B" terminal, and then connect the (-) lead of the ammeter to the disconnected output wire.)

Caution

Never use clips but tighten bolts and nuts to connect the line. Otherwise loose connections (e.g. using clips) will lead to a serious accident because of high current.

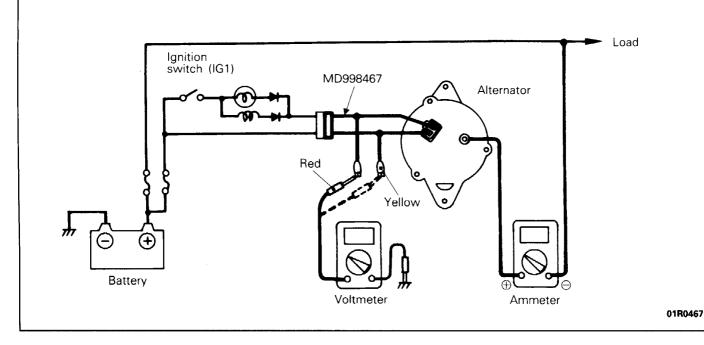
NOTE

A clamp-type ammeter which enables measurements to be taken without disconnecting the alternator output wire should be recommended.

- (5) Connect a voltmeter with a range of 0–20 V between the alternator "B" terminal and the earth.
 (Connect the (+) lead of the voltmeter to the "B" terminal, and then connect the (–) lead of the voltmeter to the earth.)
- (6) Connect a tachometer. (For the procedure for connecting the tachometer, refer to GROUP 11 – Service Adjustment Procedures.)
- (7) Connect the negative battery cable.
- (8) Leave the hood open.
- (9) Check to be sure that the reading on the voltmeter is equal to the battery voltage.

NOTE

If the voltage is 0 V, the cause is probably an open


circuit in the wire or fusible link between the alternator "B" terminal and the battery (+) terminal.

- (10)After turning the light switch on and turning on the headlamps, start the engine.
- (11) Immediately after setting the headlamps to high beam and turning the heater blower switch to the high revolution position, increase the engine speed to 2,500 r/min. and read the maximum current output value displayed on the ammeter.

Limit value: 70% of normal current output

- NOTE
- For the nominal current output, refer to the Alternator Specifications.
- Because the current from the battery will soon drop after the engine is started, the above step should be carried out as quickly as possible in order to obtain the maximum current output value.
- The current output value will depend on the electrical load and the temperature of the alternator body.
- If the electrical load is small while testing, the specified level of current may not be output even though the alternator is normal. In such cases, increase the electrical load by leaving the headlamps turned on for some time to discharge the battery or by using the lighting system in another vehicle, and then test again.
- The specified level of current also may not be output if the temperature of the alternator body or the ambient temperature is too high. In such cases, cool the alternator and then test again.
- (12) The reading on the ammeter should be above the limit value. If the reading is below the limit value and the alternator output wire is normal, remove the alternator from the engine and check the alternator.
- (13) Run the engine at idle speed after the test.
- (14)Turn the ignition switch to the OFF position.
- (15) Disconnect the negative battery cable.
- (16) Disconnect the ammeter, voltmeter and tachometer.
- (17)Connect the alternator output wire to the alternator "B" terminal.
- (18)Connect the negative battery cable.

REGULATED VOLTAGE TEST

This test determines whether the voltage regulator is correctly controlling the alternator output voltage. (1) Always be sure to check the following before the

- 1) Always be sure to check the following before the test.
 - Alternator installation
 - Check to be sure that the battery installed in the vehicle is fully charged. (Refer to GROUP 54 – Battery.)
 - Alternator drive belt tension (Refer to GROUP 11 Service Adjustment Procedures.)
 - Fusible link
 - Abnormal noise from the alternator while the engine is running
- (2) Turn the ignition switch to the OFF position.
- (3) Disconnect the negative battery cable.
- (4) Connect a digital-type voltmeter between the alternator "S" terminal and the earth. (Connect the (+) lead of the voltmeter to the "S" terminal, and then connect the (-) lead of the voltmeter to a secure earth or to the battery (-) terminal.)

- (5) Disconnect the alternator output wire from the alternator "B" terminal.
- (6) Connect a DC test ammeter with a range of 0 100 A in series between the "B" terminal and the disconnected output wire. (Connect the (+) lead of the ammeter to the "B" terminal, and then connect the (-) lead of the ammeter to the disconnected output wire.)
- (7) Connect a tachometer. (Refer to GROUP 11 Service Adjustment Procedures.)
- (8) Reconnect the negative battery cable.
- (9) Turn the ignition switch to the ON position and check that the reading on the voltmeter is equal to the battery voltage.

NOTE

If the voltage is 0 V, the cause is probably an open circuit in the wire or fusible link between the alternator "S" terminal and the battery (+) terminal.

(10)Check to be sure that all lamps and accessories are off.

- (11)Start the engine.
- (12) Increase the engine speed to 2,500 r/min.
- (13)Read the value displayed on the voltmeter when the current output by the alternator becomes 10 A or less.
- (14)If the voltage reading conforms to the value in the voltage regulation table, then the voltage regulator is operating normally.

If the voltage is outside the standard value, there is a malfunction of the voltage regulator or of the alternator.

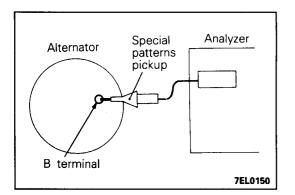
Voltage Regulation Table

Inspection terminal	Voltage regulator ambient temperature °C (°F)	Standard value V
Terminal "S"	-20 (-4)	14.2–15.4
	20 (68)	13.9–14.9
	60 (140)	13.4–14.6
	80 (176)	13.1–14.5

(15)After the test, lower the engine speed to the idle speed.

(16) Turn the ignition switch to the OFF position.

(17) Disconnect the negative battery cable.


(18)Disconnect the ammeter, voltmeter and tachometer.

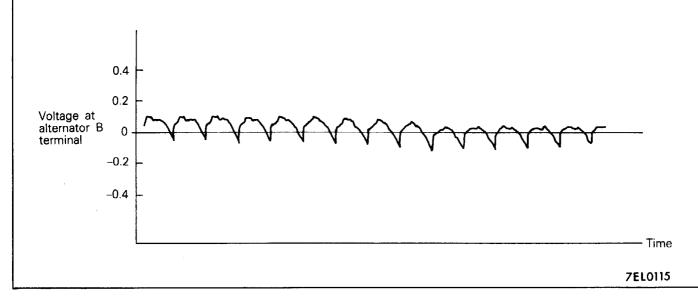
(19)Connect the alternator output wire to the alternator "B" terminal.

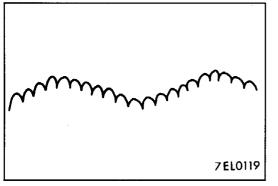
(20)Connect the negative battery cable.

16-6

NOTES

INSPECTION USING AN ANALYZER

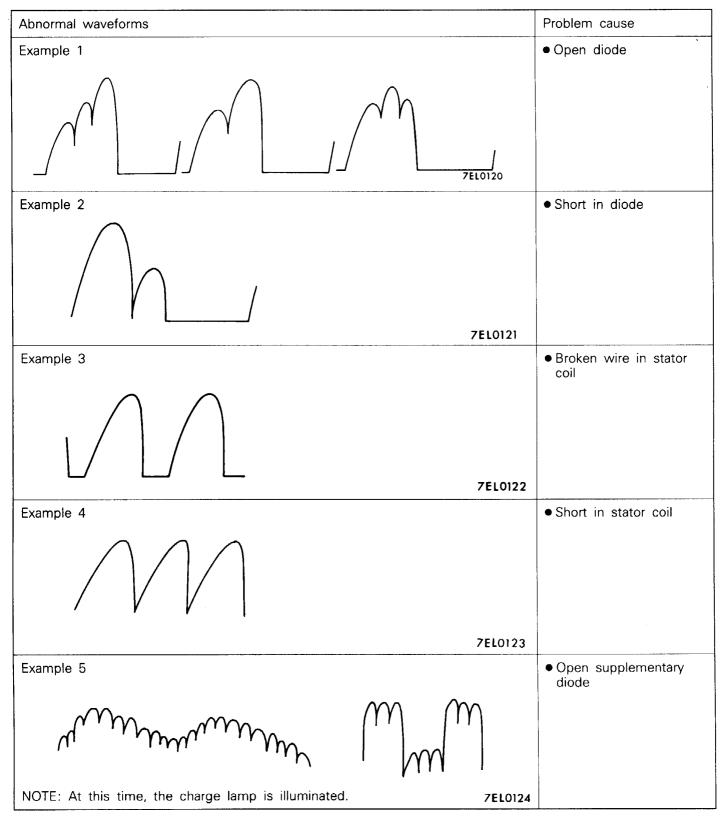

MEASUREMENT METHOD


Connect the analyzer special patterns pick-up to the alternator B terminal.

STANDARD WAVEFORM

Observation Conditions

Function	Special patterns
Pattern height	Variable
Variable knob	Ádjust while viewing the wave pattern
Pattern selector	Raster
Engine revolutions	ldle (700r/min.)

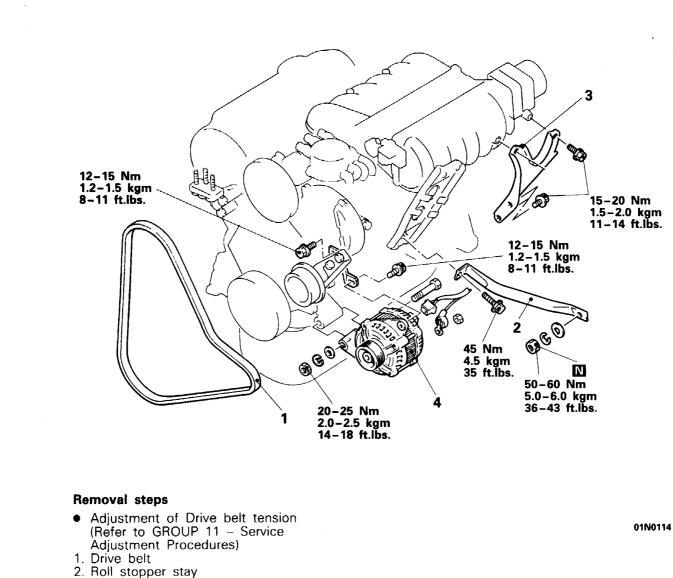

NOTE

Furthermore, the voltage waveform of the alternator B terminal can undulate as shown at left. This waveform is produced when the regulator operates according to fluctuations in the alternator load (current), and is normal for the alternator.

EXAMPLES OF ABNORMAL WAVEFORMS

NOTE

- 1. The size of the waveform patterns differs largely depending on the adjustment of the variable knob on the analyzer.
- 2. Identification of abnormal waveforms is easier when there is a large output current (regulator is not operating). (Waveforms can be observed when the headlamps are illuminated.)
- 3. Check the conditions of the charge lamp (illuminated/ not illuminated) also, and carry out a total check.



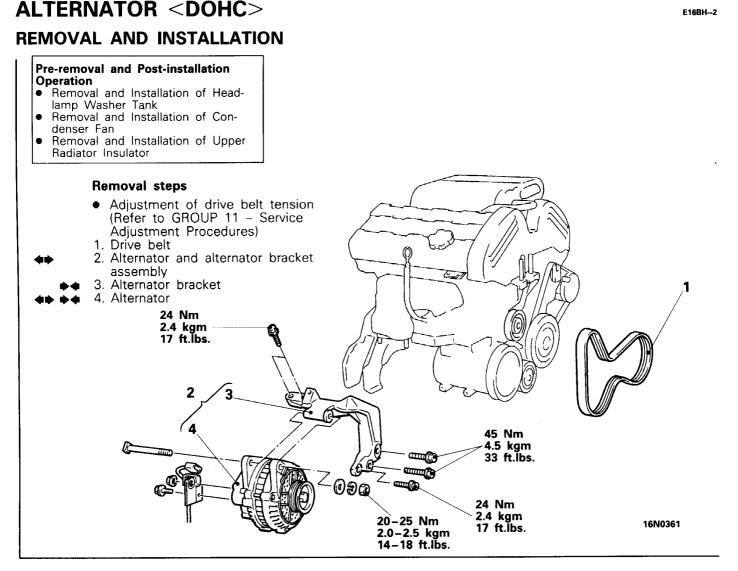
E168H--1

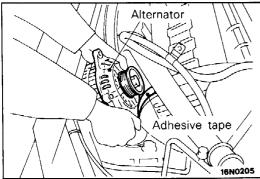
E16BHCC

ALTERNATOR <SOHC> REMOVAL AND INSTALLATION

Pre-removal and Post-installation Operation ● Removal and Installation of Air Intake Hose

- 3. Air intake plenum stay
- 4. Alternator


SERVICE POINTS OF REMOVAL


4. REMOVAL OF ALTERNATOR

- (1) Remove the mounting nut and bolt.
- (2) Take out the alternator from the transmission side through the bottom of the air intake plenum.
 - NOTE

There is only a small room to take out the alternator, so be careful not to damage the nearby components.

SERVICE POINTS OF REMOVAL

E16BHCD

2. REMOVAL OF ALTERNATOR AND ALTERNATOR BRACKET ASSEMBLY

Before removing the assembly with the engine, loosen the assembly bolt by which the alternator is fixed at the alternator bracket.

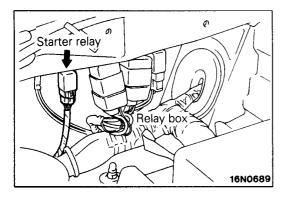
4. REMOVAL OF ALTERNATOR

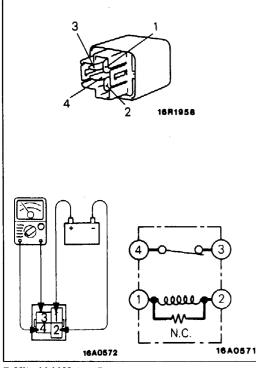
NOTE

There is only a small room to take out the alternator, so be careful not to damage the nearby components.

SERVICE POINTS OF INSTALLATION

4. INSTALLATION OF ALTERNATOR/3. ALTERNATOR BRACKET


Before installing the alternator bracket to the engine, install the alternator in the engine compartment.


E16CA--

STARTING SYSTEM SPECIFICATIONS GENERAL SPECIFICATIONS

STARTER MOTOR

Items	M/T	A/T
Type	Reduction drive with planetary gear	Reduction drive with planetary gear
Identification No.	MIT72581	MIT73281
Part No.	MD162842	MD162843
Rated output kW/V	1.2/12	1.2/12
No. of pinion teeth	8	8

SERVICE ADJUSTMENT PROCEDURES

STARTER RELAY INSPECTION

< VEHICLES WITH THEFT-ALARM SYSTEM >

- (1) Remove the battery and air cleaner assembly.
- (2) Remove the starter relay.
- (3) Apply battery voltage to terminal ① and check the continuity between the terminals when terminal ② is earthed.

Power is supplied between (1)-(2)	3-4 terminals	No continuity
Power is not supplied	1-2 terminals	Continuity
	3-4 terminals	Continuity

© Mitsubishi Motors Corporation Jun. 1992

16-9-1

NOTES

IGNITION SYSTEM SPECIFICATIONS

GENERAL SPECIFICATIONS DISTRIBUTOR

Items	SOHC engine
Type Advance mechanism	Contact pointless .
Firing order	1-2-3-4-5-6

CRANK ANGLE SENSOR

Items	DOHC engine
Туре	Contact pointless
Advance mechanism	Electronic

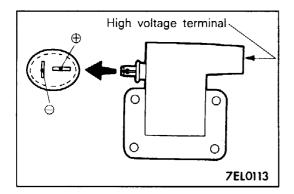
IGNITION COIL

Items	SOHC	DOHC
Type	Molded single-coil type	Molded 3 coil type
Identification No.	F-504	F-536
Part No.	MD166146	MD152648

SPARK PLUG

Items	SOHC	DOHC
NGK	BPR6ES-11	PFR6J-11
NIPPON DENSO	W20EPR11	PK20PR-P11

SERVICE SPECIFICATIONS IGNITION COIL


ltems		SOHC	DOHC	
Primary coil resistance	Ω	0.72-0.88	0.67-0.81	
Secondary coil resistance	kΩ	10.3-13.9	11.3–15.3	

SPARK PLUG

ltems		Specifications
Standard value Spark plug gap Limit	mm (in.)	1.0–1.1 (0.039–0.043)
High tension cable and spark plug cable resistance Spark plug gap (Platinum plug only)	kΩ mm (in.)	Max. 22 1.3 (0.051)

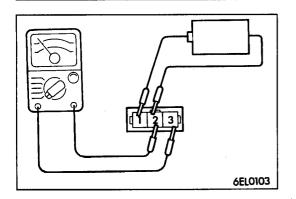
SPECIAL TOOLS

Tool	Number	Name	Use
	MB991348	Test harness set	Inspection of ignition primary voltage (power transistor connection)
Ne contraction of the second s	MD998464	Harness connec- tor (4-pin, square)	Inspection of ignition primary voltage (ignition coil connection)

SERVICE ADJUSTMENT PROCEDURES <SOHC>

IGNITION COIL INSPECTION

 Measurement of the primary coil resistance Measure the resistance of the positive (+) terminal and negative (-) terminal of the ignition coil.


Standard value: 0.72–0.88 Ω

 (2) Measurement of the secondary coil resistance Measure the resistance between the ignition coil's positive (+) terminal and the high tension terminal.

Standard value: 10.3–13.9 k Ω

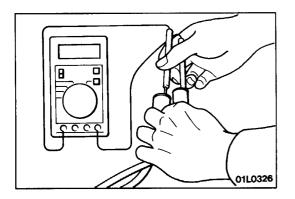
E16DE--

E16DF--

POWER TRANSISTOR INSPECTION

NOTE

An analog-type circuit tester should be used.


(1) Connect the negative (-) terminal of the 15V power supply to terminal ② of the power transistor; then check whether there is continuity between terminal ③ and terminal ② when terminal ① and the positive (+) terminal are connected and disconnected.

NOTE

Connect the negative (-) probe of the circuit tester to terminal ③.

Terminal \oplus and (+) terminal	Terminal 3 and terminal 2
Connected	Continuity
Unconnected	No continuity

(2) Replace the power transistor if there is a malfunction.

RESISTIVE CODE INSPECTION

Measure the resistance of the high tension cable and all spark plug leads.

- (1) Check cap and coating for cracks.
- (2) Measure resistance.
 - Limit: Max. 22 k Ω

CHECKING THE DETONATION SENSOR

Check the detonation sensor circuit if self-diagnosis code No. 31 is displayed.

NOTE

For information concerning the self-diagnosis codes, refer to GROUP 13 – Troubleshooting.

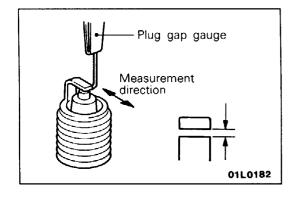
SPARK PLUG CHECK AND CLEANING

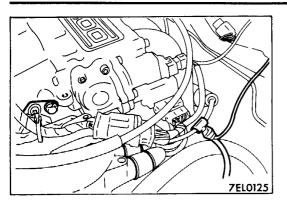
- E11FRAF
- (1) Remove the spark plug cables.

Caution When pulling off the spark plug cable from the plug always hold the cable cap, not the cable.

- (2) Remove the spark plugs.
- (3) Check for burned out electrode or damaged insulator. Check for even burning.
- (4) Remove carbon deposits with wire brush or plug cleaner. Remove sand from plug screw with compressed air.
- (5) Use a plug gap gauge to check that the plug gap is within the standard value range.

Standard value: 1.0-1.1 mm (0.040-0.043 in.)

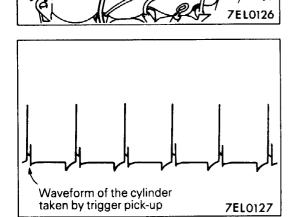

If the plug gap is not within the standard value range adjust by bending the ground electrode.


(6) Clean the engine plug holes.

Caution

Use care not to allow foreign matter in cylinders.

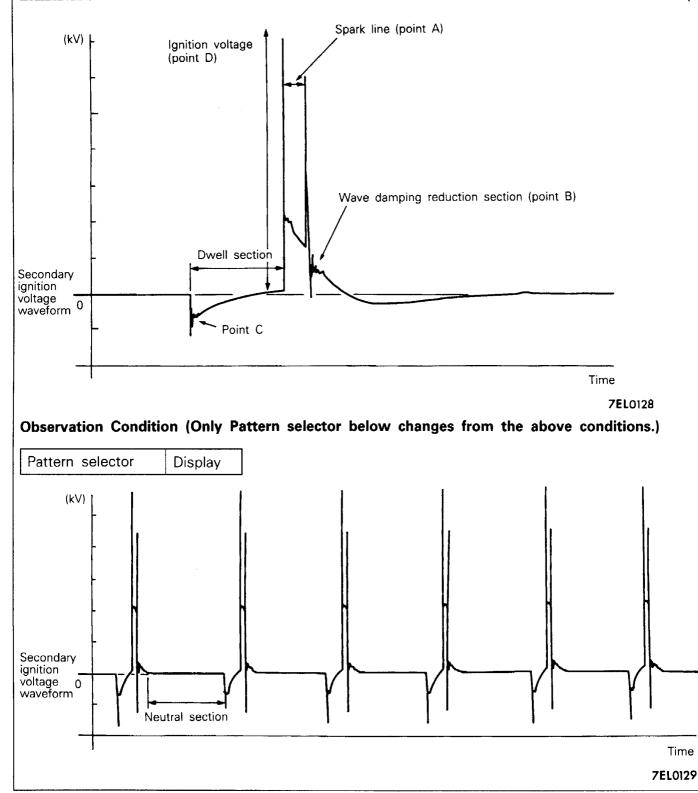
(7) Install the spark plugs.



INSPECTION USING AN ANALYZER (SECON-DARY AND PRIMARY IGNITION VOLTAGE WAVE-FORMS)

INSPECTION OF SECONDARY IGNITION VOLTAGE MEASUREMENT METHOD

- (1) Clamp the Secondary pickup around high tension cable.
- (2) Clamp the spark plug cable with the Trigger pickup. (Basically, clamp the No.1 cylinder spark plug cable.)


NOTE

The cylinder waveform taken by the trigger pickup appears from the left side of the screen.

STANDARD WAVEFORM

Observation Conditions

Function	Secondary
Pattern height	High (or Low)
Pattern selector	Raster
Engine revolutions	ldle (700 r/min.)

WAVEFORM OBSERVATION POINTS

Point A : The height, length and slope of the spark line (refer to abnormal waveform examples 1, 2, 3 and 4) show the following trends.

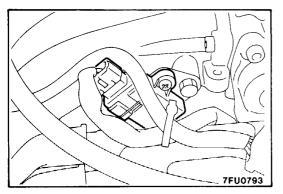
Spa	ark line	Plug gap	Condition of electrode	Compression force	Concentration of air mixture	Ignition timing	Spark plug cable
ength	Long	Small	Normal	Low	Rich	Advanced	Leak
Len	Short	Large	Large wear	High	Lean	Retarded	High resistance
eight	High	Large	Large wear	High	Lean	Retarded	High resistance
Hei	Low	Small	Normal	Low	Rich	Advanced	Leak
5	Slope	Large	Plug is fouled	-	_	-	_

Point B : Number of vibrations in reduction vibration section (Refer to abnormal waveform example 5)

Number of vibrations	Coil and condenser
Three or more	Normal
Except above	Abnormal

Point C : Number of vibrations at beginning of dwell section (Refer to abnormal waveform example 5)

Number of vibrations	Coil
5–6 or higher	Normal
Except above	Abnormal


Point D : Ignition voltage height (distribution per each cylinder) shows the following trends.

lgnition voltage	Plug gap	Condition of electrode	Compression force	Concentration of air mixture	Ignition timing	Spark plug cable
High	Large	Large wear	High	Lean	Retarded	High resistance
Low	Small	Normal	Low	Rich	Advanced	Leak

16-12-4 IGNITION SYSTEM – Service Adjustment Procedures <SOHC>

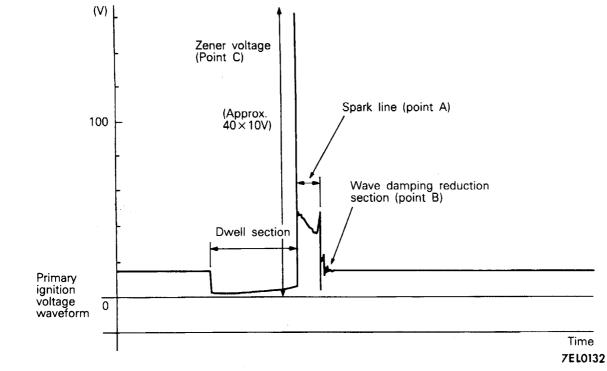
Abnormal waveform Wave characteristics Cause of probrem Example 1 Spark line is high and short. Spark plug gap is too large. 01P0215 Spark line is low and long, Example 2 Spark plug gap is too small. and is sloping. Also, the second half of the spark line is distorted. This could be a result of misfiring. 01P0216 Example 3 Spark line is low and long, Spark plug gap is fouled. and is sloping. However, there is almost no spark line distortion. 01P0217 Spark plug cable is nearly Example 4 Spark line is high and short. Difficult to distinguish falling off. between this and abnormal (Causing a dual ignition) wave pattern example 1. 01P0218 Example 5 No waves in wave damping Rare short in ignition coil. section. 01P0219

EXAMPLES OF ABNORMAL WAVEFORMS

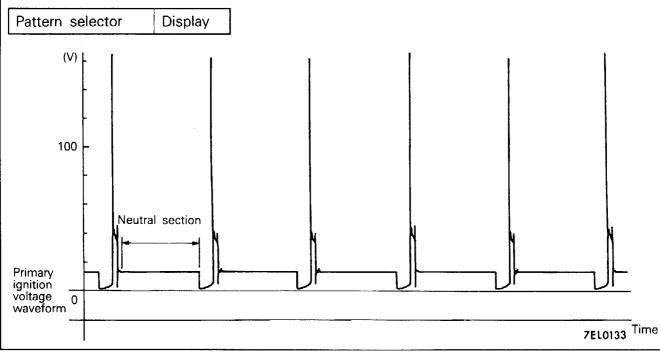
Analyzer Analyzer Primary pickup Earth 7EL0131

INSPECTION OF PRIMARY IGNITION VOLTAGE WAVEFORMS

MEASUREMENT METHOD


- (1) Remove the power transistor connector and connect the special tool (Harness connector: MB991348) in between. All terminals should be connected.
- (2) Connect the primary pickup of the adjuster to the power transistor connector terminal (3).
- (3) Earth the primary pickup earth terminal.
- (4) Clamp the spark plug cable with the primary pickup.

The waveform of the cylinder clamped by the trigger pickup appears from the left side of the screen.


STANDARD WAVEFORM

Observation Conditions

Function	Secondary
Pattern height	High (or Low)
Pattern selector	Raster
Engine revolutions	Idle (700 r/min.)

Observation Conditions (Only Pattern selector below changes from the above conditions.)

© Mitsubishi Motors Corporation Apr. 1991

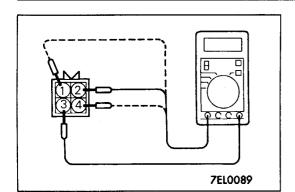
WAVEFORM OBSERVATION POINTS

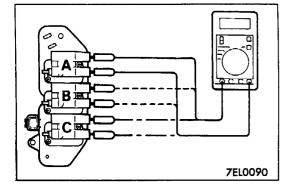
Point A : The height, length and slope of the spark line (refer to abnormal waveform examples 1, 2, 3 and 4) show the following trends.

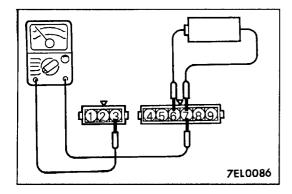
Spa	ark line	Plug gap	Condition of electrode	Compression force	Concentration of air mixture	Ignition timing	High tension cable
Length	Long	Small	Normal	Low	Rich	Advanced	Leak
Len	Short	Large	Large wear	High	Lean	Retarded	High resistance
eight	High	Large	Large wear	High	Lean	Retarded	High resistance
Hei	Low	Small	Normal	Low	Rich	Advanced	Leak
	Slope	Large	Plug is fouled	-		_	_

Point B : Number of vibrations in reduction vibration section (Refer to abnormal waveform example 5)

Number of vibrations	Coil, condenser	
3 or higher	Normal	
Except above	Abnormal	


Point C : Height of Zener voltage


Height of Zener voltage	Probable cause
High	Problem in Zener diode
Low	Abnormal resistance in primary coil circuit


16-12-8 IGNITION SYSTEM – Service Adjustment Procedures <SOHC>

EXAMPLES OF ABNORMAL WAVEFORMS

Abnormal waveform	Wave characteristics	Cause of problem
Example 1	Spark line is high and short.	Spark plug gap is too large.
01P0210		
Example 2	Spark line is low and long, and is sloping. Also, the second half of the spark line is distorted. This could be a result of mis- firing.	Spark plug gap is too small.
01P0211		
Example 3	Spark line is low and long, and is sloping. However, there is almost no spark line distortion.	Spark plug gap is fouled.
Example 4	Spark line is high and short	Spark plug cable is nearly falling off. (Causing a dual ignition)
Example 5	No waves in wave damping section.	Rare short in ignition coil.
01P0214		

SERVICE ADJUSTMENT PROCEDURES <DOHC>

IGNITION COIL INSPECTION

Primary Coil Resistance

Measure the resistance between connector terminal ③ (power) and each coil terminal.

Measuring point:

Coil A (No. 1 – No. 4 cylinder side coil)	.
Coil B (No. 2 – No. 5 cylinder side coil)	.
Coil C (No. 3 – No. 6 cylinder side coil)	

Standard value: 0.67–0.81 Ω

Secondary Coil Resistance

Measure the resistance between each coil high voltage terminals.

Measuring point:

Coil A (No. 1 - No. 4 cylinder side coil)

- Coil B (No. 2 No. 5 cylinder side coil)
- Coil C (No. 3 No. 6 cylinder side coil)

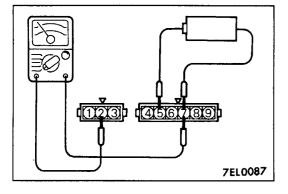
Standard value: 11.3–15.3 k Ω

POWER TRANSISTOR INSPECTION

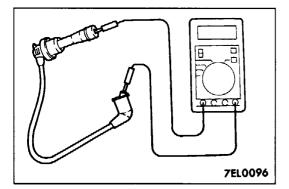
NOTE

An analog-type circuit tester should be used.

No. 1 - No. 4 coil side


(1) Connect the negative (-) terminal of the 1.5 V power supply to terminal ⑦ of the power transistor; then check whether there is continuity between terminal ③ and terminal ⑦ when terminal ⑥ and the positive (+) terminal are connected and disconnected.

NOTE


Connect the (-) probe of the circuit tester to terminal ③.

Terminal (+) terminal	Terminal ③ and terminal ⑦
Connected	Continuity
Unconnected	No continuity

(2) Replace the power transistor if there is a malfunction.

TEL0088

No. 2 - No. 5 coil side

 Connect the negative (-) terminal of the 1.5 V power supply to terminal 7 of the power transistor; then check whether there is continuity between terminal 2 and terminal 7 when terminal 5 and the positive (+) terminal are connected and disconnected.

NOTE

Connect the (-) probe of the circuit tester to terminal ②.

Terminal ⑤ and (+) terminal	Terminal @ and terminal @
Connected	Continuity
Unconnected	No continuity

(2) Replace the power transistor if there is a malfunction.

No. 3 - No. 6 coil side

(1) Connect the negative (-) terminal of the 1.5 V power supply to terminal 7 of the power transistor; then check whether there is continuity between terminal 1 and terminal 7 when terminal 4 and the positive (+) terminal are connected and disconnected.

NOTE

Connect the (-) probe of the circuit tester to terminal ①.

Terminal ④ and (+) terminal	Terminal ① and terminal ⑦
Connected	Continuity
Unconnected	No continuity

(2) Replace the power transistor if there is a malfunction.

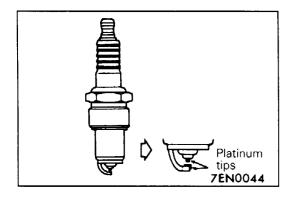
RESISTIVE CODE INSPECTION

Measure the resistance of the high tension cable and all spark plug leads.

(1) Check cap and coating for cracks.

(2) Measure resistance.

Unit: $k\Omega$


		Spark pl	ug cable		
No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
8.6	13.9	6.4	11.5	4.5	11.7

CHECKING THE DETONATION SENSOR

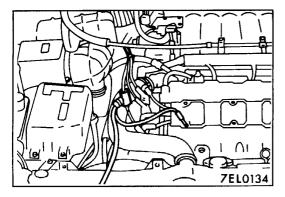
Check the detonation sensor circuit if self-diagnosis code, No. 31 is shown.

NOTE

For information concerning the self-diagnosis codes, refer to GROUP 13 – Troubleshooting.

SPARK PLUG CHECK

- (1) Remove the center cover from the front bank.
- (2) Remove the air intake plenum from the rear bank.
- (3) Remove the spark plug cables.


Caution When pulling off the spark plug cable from the plug, always hold the cable cap, not the cable.

- (4) Remove the spark plugs.
- (5) Check the plug gap and replace if the limit is exceeded.

Standard value: 1.0-1.1 mm (0.039-0.043 in.) Limit: 1.3 mm (0.051 in.)

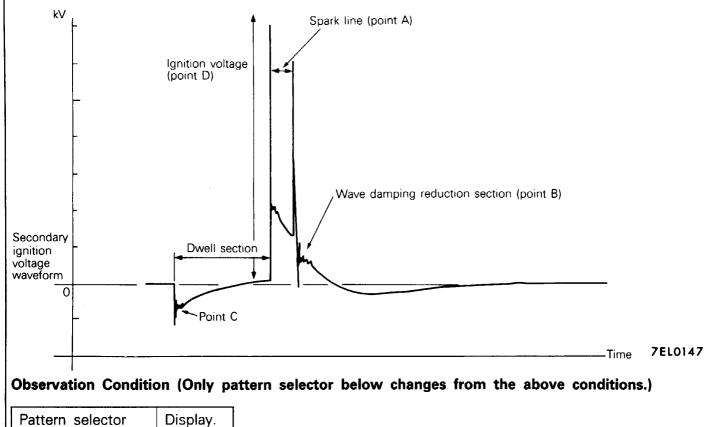
Caution

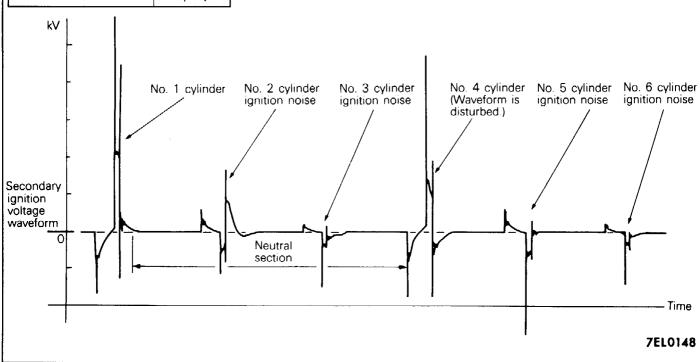
- 1. Do not attempt to adjust the gap of the platinum plug.
- 2. Cleaning of the platinum plug may result damage the platinum tip. Therefore, if carbon deposits must be removed, use a plug cleaner and complete cleaning within 20 seconds for protection of the electrode. Do not use wire brushes.

INSPECTION USING AN ANALYZER (SECON-DARY AND PRIMARY IGNITION VOLTAGE WAVE-FORMS)

INSPECTION OF SECONDARY IGNITION VOLTAGE MEASUREMENT METHOD

- (1) Clamp the SECONDARY PICKUP around spark plug cable. NOTE
 - 1. The peak of the ignition voltage will be reversed when the spark cables of No.4, No.5, No.6 cylinders are clamped and when the spark plug cables of No.1, No.2, and No.3 cylinders are clamped.
 - Because of the two-cylinder simultaneous ignition system, the waves for two cylinders in each group appear during wave observation (No.1 cylinder - No.4 cylinder, No.2 cylinder - No.5 cylinder, No.3 cylinder -No.6 cylinder). However, wave observation is carried out for the cylinder with the spark plug cable clamped by the secondary pickup.
- (2) Clamp the spark plug cable with the Trigger pickup.

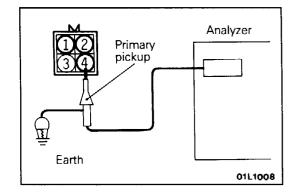

NOTE


- 1. Clamp the spark plug cable for the No.1, No.2 or No.3 cylinder of the same group with the cylinder that is clamped with the secondary pickup.
- 2. Identification of which cylinder wave pattern is displayed can be difficult, but the wave pattern of the cylinder which is clamped with the secondary pickup will be stable, so this can be used as a reference for identification.

STANDARD WAVEFORM

Observation Conditions

Function	Secondary
Pattern height	High (or Low)
Pattern selector	Raster
Engine revolutions	Idle (700 r/min.)



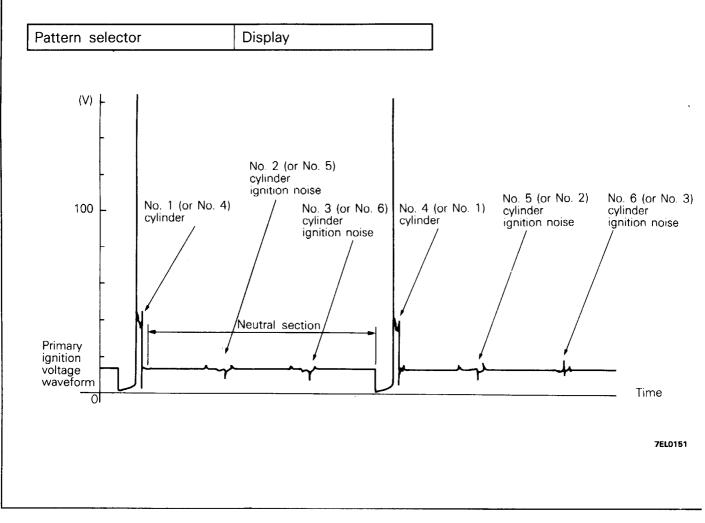
WAVEFORM OBSERVATION POINTS

For waveform observation points, refer to P. 16-12-3

EXAMPLES OF ABNORMAL WAVEFORMS

For examples of abnormal waveforms, refer to P. 16-12-4

INSPECTION OF PRIMARY IGNITION VOLTAGE MEASUREMENT METHOD


- (1) Disconnect the ignition coil connector and connect the special tool (harness connector: MB998464) in between.
- (2) Connect the analyzer primary pickup to the ignition coil connector terminal (2) (black clip on the special tool) when observing the No. 1 No. 4 cylinder group, terminal (1) (red clip) for the No. 2 No. 5 cylinder group, and terminal [4] (white clip) for the No. 3 No. 6 cylinder group.
- (3) Connect the primary pickup earth terminal.
- (4) Clamp the spark plug with the trigger pickup.

NOTE

- 1. Clamp the spark plug cable for No.1, No.2 and No.3 cylinders of the same group with the cylinder that is connected to the primary pickup.
- 2. The wave pattern of either cylinder in the same group will appear at the left edge of the screen.

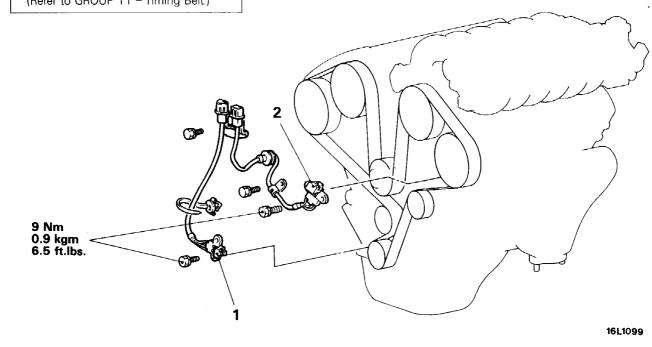
STANDARD WAVEFORM Observation Conditions

Function	Secondary	
Pattern height	High (or Low)	
Pattern selector	Raster	
Engine revolutions	ldle (700 r/min.)	
(V) - 100 	Zener voltage (Point C) (Approx. 40 × 10V) Spark line (point A) Wave damping reduction	
Primary ignition voltage waveform 0	Dwell section	Time
I		7EL014

Observation Conditions (Only pattern selector below changes from the above conditions.)

WAVEFORM OBSERVATION POINT

For waveform observation points, refer to P.16-12-7 EXAMPLES OF ABNORMAL WAVEFORMS


For examples of abnormal waveforms, refer to P. 16-12-8

CRANK ANGLE SENSOR AND CAMSHAFT POSITION SENSOR $<\!\!$ OHC BUILT FROM NOVEMBER, 1992>

REMOVAL AND INSTALLATION

Pre-removal and Post-installation Operation

 Removal and Installation of Timing Belt Cover (Refer to GROUP 11 – Timing Belt.)

Removal steps

- 1. Crank angle sensor
- 2. Camshaft position sensor

INSPECTION

For information concerning the inspection of the camshaft position sensor and the crank angle sensor, refer to GROUP 13 – On-Vehicle Inspection of MPI Components.